61 research outputs found

    A survey of parameterized algorithms and the complexity of edge modification

    Get PDF
    The survey is a comprehensive overview of the developing area of parameterized algorithms for graph modification problems. It describes state of the art in kernelization, subexponential algorithms, and parameterized complexity of graph modification. The main focus is on edge modification problems, where the task is to change some adjacencies in a graph to satisfy some required properties. To facilitate further research, we list many open problems in the area.publishedVersio

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Master index: volumes 31–40

    Get PDF

    Subject Index Volumes 1–200

    Get PDF

    Further topics in connectivity

    Get PDF
    Continuing the study of connectivity, initiated in §4.1 of the Handbook, we survey here some (sufficient) conditions under which a graph or digraph has a given connectivity or edge-connectivity. First, we describe results concerning maximal (vertex- or edge-) connectivity. Next, we deal with conditions for having (usually lower) bounds for the connectivity parameters. Finally, some other general connectivity measures, such as one instance of the so-called “conditional connectivity,” are considered. For unexplained terminology concerning connectivity, see §4.1.Peer ReviewedPostprint (published version

    Proceedings of the 3rd International Workshop on Optimal Networks Topologies IWONT 2010

    Get PDF
    Peer Reviewe

    Hardness Transitions of Star Colouring and Restricted Star Colouring

    Full text link
    We study how the complexity of the graph colouring problems star colouring and restricted star colouring vary with the maximum degree of the graph. Restricted star colouring (in short, rs colouring) is a variant of star colouring. For kNk\in \mathbb{N}, a kk-colouring of a graph GG is a function f ⁣:V(G)Zkf\colon V(G)\to \mathbb{Z}_k such that f(u)f(v)f(u)\neq f(v) for every edge uvuv of GG. A kk-colouring of GG is called a kk-star colouring of GG if there is no path u,v,w,xu,v,w,x in GG with f(u)=f(w)f(u)=f(w) and f(v)=f(x)f(v)=f(x). A kk-colouring of GG is called a kk-rs colouring of GG if there is no path u,v,wu,v,w in GG with f(v)>f(u)=f(w)f(v)>f(u)=f(w). For kNk\in \mathbb{N}, the problem kk-STAR COLOURABILITY takes a graph GG as input and asks whether GG admits a kk-star colouring. The problem kk-RS COLOURABILITY is defined similarly. Recently, Brause et al. (Electron. J. Comb., 2022) investigated the complexity of 3-star colouring with respect to the graph diameter. We study the complexity of kk-star colouring and kk-rs colouring with respect to the maximum degree for all k3k\geq 3. For k3k\geq 3, let us denote the least integer dd such that kk-STAR COLOURABILITY (resp. kk-RS COLOURABILITY) is NP-complete for graphs of maximum degree dd by Ls(k)L_s^{(k)} (resp. Lrs(k)L_{rs}^{(k)}). We prove that for k=5k=5 and k7k\geq 7, kk-STAR COLOURABILITY is NP-complete for graphs of maximum degree k1k-1. We also show that 44-RS COLOURABILITY is NP-complete for planar 3-regular graphs of girth 5 and kk-RS COLOURABILITY is NP-complete for triangle-free graphs of maximum degree k1k-1 for k5k\geq 5. Using these results, we prove the following: (i) for k4k\geq 4 and dk1d\leq k-1, kk-STAR COLOURABILITY is NP-complete for dd-regular graphs if and only if dLs(k)d\geq L_s^{(k)}; and (ii) for k4k\geq 4, kk-RS COLOURABILITY is NP-complete for dd-regular graphs if and only if Lrs(k)dk1L_{rs}^{(k)}\leq d\leq k-1

    The Medieval Risk-Reward Society: Courts, Adventure, and Love in the European Middle Ages

    Get PDF
    Item embargoed for five year
    corecore