4,503 research outputs found

    Maximizing Utility Among Selfish Users in Social Groups

    Full text link
    We consider the problem of a social group of users trying to obtain a "universe" of files, first from a server and then via exchange amongst themselves. We consider the selfish file-exchange paradigm of give-and-take, whereby two users can exchange files only if each has something unique to offer the other. We are interested in maximizing the number of users who can obtain the universe through a schedule of file-exchanges. We first present a practical paradigm of file acquisition. We then present an algorithm which ensures that at least half the users obtain the universe with high probability for nn files and m=O(log⁥n)m=O(\log n) users when n→∞n\rightarrow\infty, thereby showing an approximation ratio of 2. Extending these ideas, we show a 1+Ï”11+\epsilon_1 - approximation algorithm for m=O(n)m=O(n), Ï”1>0\epsilon_1>0 and a (1+z)/2+Ï”2(1+z)/2 +\epsilon_2 - approximation algorithm for m=O(nz)m=O(n^z), z>1z>1, Ï”2>0\epsilon_2>0. Finally, we show that for any m=O(eo(n))m=O(e^{o(n)}), there exists a schedule of file exchanges which ensures that at least half the users obtain the universe.Comment: 11 pages, 3 figures; submitted for review to the National Conference on Communications (NCC) 201

    Controlled Matching Game for Resource Allocation and User Association in WLANs

    Full text link
    In multi-rate IEEE 802.11 WLANs, the traditional user association based on the strongest received signal and the well known anomaly of the MAC protocol can lead to overloaded Access Points (APs), and poor or heterogeneous performance. Our goal is to propose an alternative game-theoretic approach for association. We model the joint resource allocation and user association as a matching game with complementarities and peer effects consisting of selfish players solely interested in their individual throughputs. Using recent game-theoretic results we first show that various resource sharing protocols actually fall in the scope of the set of stability-inducing resource allocation schemes. The game makes an extensive use of the Nash bargaining and some of its related properties that allow to control the incentives of the players. We show that the proposed mechanism can greatly improve the efficiency of 802.11 with heterogeneous nodes and reduce the negative impact of peer effects such as its MAC anomaly. The mechanism can be implemented as a virtual connectivity management layer to achieve efficient APs-user associations without modification of the MAC layer

    Cooperative Local Caching under Heterogeneous File Preferences

    Full text link
    Local caching is an effective scheme for leveraging the memory of the mobile terminal (MT) and short range communications to save the bandwidth usage and reduce the download delay in the cellular communication system. Specifically, the MTs first cache in their local memories in off-peak hours and then exchange the requested files with each other in the vicinity during peak hours. However, prior works largely overlook MTs' heterogeneity in file preferences and their selfish behaviours. In this paper, we practically categorize the MTs into different interest groups according to the MTs' preferences. Each group of MTs aims to increase the probability of successful file discovery from the neighbouring MTs (from the same or different groups). Hence, we define the groups' utilities as the probability of successfully discovering the file in the neighbouring MTs, which should be maximized by deciding the caching strategies of different groups. By modelling MTs' mobilities as homogeneous Poisson point processes (HPPPs), we analytically characterize MTs' utilities in closed-form. We first consider the fully cooperative case where a centralizer helps all groups to make caching decisions. We formulate the problem as a weighted-sum utility maximization problem, through which the maximum utility trade-offs of different groups are characterized. Next, we study two benchmark cases under selfish caching, namely, partial and no cooperation, with and without inter-group file sharing, respectively. The optimal caching distributions for these two cases are derived. Finally, numerical examples are presented to compare the utilities under different cases and show the effectiveness of the fully cooperative local caching compared to the two benchmark cases

    Social Data Offloading in D2D-Enhanced Cellular Networks by Network Formation Games

    Full text link
    Recently, cellular networks are severely overloaded by social-based services, such as YouTube, Facebook and Twitter, in which thousands of clients subscribe a common content provider (e.g., a popular singer) and download his/her content updates all the time. Offloading such traffic through complementary networks, such as a delay tolerant network formed by device-to-device (D2D) communications between mobile subscribers, is a promising solution to reduce the cellular burdens. In the existing solutions, mobile users are assumed to be volunteers who selfishlessly deliver the content to every other user in proximity while moving. However, practical users are selfish and they will evaluate their individual payoffs in the D2D sharing process, which may highly influence the network performance compared to the case of selfishless users. In this paper, we take user selfishness into consideration and propose a network formation game to capture the dynamic characteristics of selfish behaviors. In the proposed game, we provide the utility function of each user and specify the conditions under which the subscribers are guaranteed to converge to a stable network. Then, we propose a practical network formation algorithm in which the users can decide their D2D sharing strategies based on their historical records. Simulation results show that user selfishness can highly degrade the efficiency of data offloading, compared with ideal volunteer users. Also, the decrease caused by user selfishness can be highly affected by the cost ratio between the cellular transmission and D2D transmission, the access delays, and mobility patterns

    Self-Organizing Flows in Social Networks

    Get PDF
    Social networks offer users new means of accessing information, essentially relying on "social filtering", i.e. propagation and filtering of information by social contacts. The sheer amount of data flowing in these networks, combined with the limited budget of attention of each user, makes it difficult to ensure that social filtering brings relevant content to the interested users. Our motivation in this paper is to measure to what extent self-organization of the social network results in efficient social filtering. To this end we introduce flow games, a simple abstraction that models network formation under selfish user dynamics, featuring user-specific interests and budget of attention. In the context of homogeneous user interests, we show that selfish dynamics converge to a stable network structure (namely a pure Nash equilibrium) with close-to-optimal information dissemination. We show in contrast, for the more realistic case of heterogeneous interests, that convergence, if it occurs, may lead to information dissemination that can be arbitrarily inefficient, as captured by an unbounded "price of anarchy". Nevertheless the situation differs when users' interests exhibit a particular structure, captured by a metric space with low doubling dimension. In that case, natural autonomous dynamics converge to a stable configuration. Moreover, users obtain all the information of interest to them in the corresponding dissemination, provided their budget of attention is logarithmic in the size of their interest set
    • 

    corecore