4,750 research outputs found

    Opportunistic Third-Party Backhaul for Cellular Wireless Networks

    Full text link
    With high capacity air interfaces and large numbers of small cells, backhaul -- the wired connectivity to base stations -- is increasingly becoming the cost driver in cellular wireless networks. One reason for the high cost of backhaul is that capacity is often purchased on leased lines with guaranteed rates provisioned to peak loads. In this paper, we present an alternate \emph{opportunistic backhaul} model where third parties provide base stations and backhaul connections and lease out excess capacity in their networks to the cellular provider when available, presumably at significantly lower costs than guaranteed connections. We describe a scalable architecture for such deployments using open access femtocells, which are small plug-and-play base stations that operate in the carrier's spectrum but can connect directly into the third party provider's wired network. Within the proposed architecture, we present a general user association optimization algorithm that enables the cellular provider to dynamically determine which mobiles should be assigned to the third-party femtocells based on the traffic demands, interference and channel conditions and third-party access pricing. Although the optimization is non-convex, the algorithm uses a computationally efficient method for finding approximate solutions via dual decomposition. Simulations of the deployment model based on actual base station locations are presented that show that large capacity gains are achievable if adoption of third-party, open access femtocells can reach even a small fraction of the current market penetration of WiFi access points.Comment: 9 pages, 6 figure

    Area Spectral Efficiency Analysis and Energy Consumption Minimization in Multi-Antenna Poisson Distributed Networks

    Full text link
    This paper aims at answering two fundamental questions: how area spectral efficiency (ASE) behaves with different system parameters; how to design an energy-efficient network. Based on stochastic geometry, we obtain the expression and a tight lower-bound for ASE of Poisson distributed networks considering multi-user MIMO (MU-MIMO) transmission. With the help of the lower-bound, some interesting results are observed. These results are validated via numerical results for the original expression. We find that ASE can be viewed as a concave function with respect to the number of antennas and active users. For the purpose of maximizing ASE, we demonstrate that the optimal number of active users is a fixed portion of the number of antennas. With optimal number of active users, we observe that ASE increases linearly with the number of antennas. Another work of this paper is joint optimization of the base station (BS) density, the number of antennas and active users to minimize the network energy consumption. It is discovered that the optimal combination of the number of antennas and active users is the solution that maximizes the energy-efficiency. Besides the optimal algorithm, we propose a suboptimal algorithm to reduce the computational complexity, which can achieve near optimal performance.Comment: Submitted to IEEE Transactions on Wireless Communications, Major Revisio

    Analysis of LTE-A Heterogeneous Networks with SIR-based Cell Association and Stochastic Geometry

    Full text link
    This paper provides an analytical framework to characterize the performance of Heterogeneous Networks (HetNets), where the positions of base stations and users are modeled by spatial Poisson Point Processes (stochastic geometry). We have been able to formally derive outage probability, rate coverage probability, and mean user bit-rate when a frequency reuse of KK and a novel prioritized SIR-based cell association scheme are applied. A simulation approach has been adopted in order to validate our analytical model; theoretical results are in good agreement with simulation ones. The results obtained highlight that the adopted cell association technique allows very low outage probability and the fulfillment of certain bit-rate requirements by means of adequate selection of reuse factor and micro cell density. This analytical model can be adopted by network operators to gain insights on cell planning. Finally, the performance of our SIR-based cell association scheme has been validated through comparisons with other schemes in literature.Comment: Paper accepted to appear on the Journal of Communication Networks (accepted on November 28, 2017); 15 page

    Capacity Analysis of LTE-Advanced HetNets with Reduced Power Subframes and Range Expansion

    Get PDF
    The time domain inter-cell interference coordination techniques specified in LTE Rel. 10 standard improves the throughput of picocell-edge users by protecting them from macrocell interference. On the other hand, it also degrades the aggregate capacity in macrocell because the macro base station (MBS) does not transmit data during certain subframes known as almost blank subframes. The MBS data transmission using reduced power subframes was standardized in LTE Rel. 11, which can improve the capacity in macrocell while not causing high interference to the nearby picocells. In order to get maximum benefit from the reduced power subframes, setting the key system parameters, such as the amount of power reduction, carries critical importance. Using stochastic geometry, this paper lays down a theoretical foundation for the performance evaluation of heterogeneous networks with reduced power subframes and range expansion bias. The analytic expressions for average capacity and 5th percentile throughput are derived as a function of transmit powers, node densities, and interference coordination parameters in a heterogeneous network scenario, and are validated through Monte Carlo simulations. Joint optimization of range expansion bias, power reduction factor, scheduling thresholds, and duty cycle of reduced power subframes are performed to study the trade-offs between aggregate capacity of a cell and fairness among the users. To validate our analysis, we also compare the stochastic geometry based theoretical results with the real MBS deployment (in the city of London) and the hexagonal-grid model. Our analysis shows that with optimum parameter settings, the LTE Rel. 11 with reduced power subframes can provide substantially better performance than the LTE Rel. 10 with almost blank subframes, in terms of both aggregate capacity and fairness.Comment: Submitted to EURASIP Journal on Wireless Communications and Networking (JWCN
    • …
    corecore