2 research outputs found

    Streaming Algorithms for Diversity Maximization with Fairness Constraints

    Full text link
    Diversity maximization is a fundamental problem with wide applications in data summarization, web search, and recommender systems. Given a set XX of nn elements, it asks to select a subset SS of kβ‰ͺnk \ll n elements with maximum \emph{diversity}, as quantified by the dissimilarities among the elements in SS. In this paper, we focus on the diversity maximization problem with fairness constraints in the streaming setting. Specifically, we consider the max-min diversity objective, which selects a subset SS that maximizes the minimum distance (dissimilarity) between any pair of distinct elements within it. Assuming that the set XX is partitioned into mm disjoint groups by some sensitive attribute, e.g., sex or race, ensuring \emph{fairness} requires that the selected subset SS contains kik_i elements from each group i∈[1,m]i \in [1,m]. A streaming algorithm should process XX sequentially in one pass and return a subset with maximum \emph{diversity} while guaranteeing the fairness constraint. Although diversity maximization has been extensively studied, the only known algorithms that can work with the max-min diversity objective and fairness constraints are very inefficient for data streams. Since diversity maximization is NP-hard in general, we propose two approximation algorithms for fair diversity maximization in data streams, the first of which is 1βˆ’Ξ΅4\frac{1-\varepsilon}{4}-approximate and specific for m=2m=2, where Ρ∈(0,1)\varepsilon \in (0,1), and the second of which achieves a 1βˆ’Ξ΅3m+2\frac{1-\varepsilon}{3m+2}-approximation for an arbitrary mm. Experimental results on real-world and synthetic datasets show that both algorithms provide solutions of comparable quality to the state-of-the-art algorithms while running several orders of magnitude faster in the streaming setting.Comment: 13 pages, 11 figures; published in ICDE 202

    Maximizing diversity over clustered data*

    No full text
    | openaire: EC/H2020/871042/EU//SoBigData-PlusPlusMaximum diversity aims at selecting a diverse set of high-quality objects from a collection, which is a fundamental problem and has a wide range of applications, e.g., in Web search. Diversity under a uniform or partition matroid constraint naturally describes useful cardinality or budget requirements, and admits simple approximation algorithms [5]. When applied to clustered data, however, popular algorithms such as picking objects iteratively and performing local search lose their approximation guarantees towards maximum intra-cluster diversity because they fail to optimize the objective in a global manner. We propose an algorithm that greedily adds a pair of objects instead of a singleton, and which attains a constant approximation factor over clustered data. We further extend the algorithm to the case of monotone and submodular quality function, and under a partition matroid constraint. We also devise a technique to make our algorithm scalable, and on the way we obtain a modification that gives better solutions in practice while maintaining the approximation guarantee in theory. Our algorithm achieves excellent performance, compared to strong baselines in a mix of synthetic and real-world datasets.Peer reviewe
    corecore