1,683 research outputs found

    Maximizing Symmetric Submodular Functions

    Full text link
    Symmetric submodular functions are an important family of submodular functions capturing many interesting cases including cut functions of graphs and hypergraphs. Maximization of such functions subject to various constraints receives little attention by current research, unlike similar minimization problems which have been widely studied. In this work, we identify a few submodular maximization problems for which one can get a better approximation for symmetric objectives than the state of the art approximation for general submodular functions. We first consider the problem of maximizing a non-negative symmetric submodular function f ⁣:2NR+f\colon 2^\mathcal{N} \to \mathbb{R}^+ subject to a down-monotone solvable polytope P[0,1]N\mathcal{P} \subseteq [0, 1]^\mathcal{N}. For this problem we describe an algorithm producing a fractional solution of value at least 0.432f(OPT)0.432 \cdot f(OPT), where OPTOPT is the optimal integral solution. Our second result considers the problem max{f(S):S=k}\max \{f(S) : |S| = k\} for a non-negative symmetric submodular function f ⁣:2NR+f\colon 2^\mathcal{N} \to \mathbb{R}^+. For this problem, we give an approximation ratio that depends on the value k/Nk / |\mathcal{N}| and is always at least 0.4320.432. Our method can also be applied to non-negative non-symmetric submodular functions, in which case it produces 1/eo(1)1/e - o(1) approximation, improving over the best known result for this problem. For unconstrained maximization of a non-negative symmetric submodular function we describe a deterministic linear-time 1/21/2-approximation algorithm. Finally, we give a [1(11/k)k1][1 - (1 - 1/k)^{k - 1}]-approximation algorithm for Submodular Welfare with kk players having identical non-negative submodular utility functions, and show that this is the best possible approximation ratio for the problem.Comment: 31 pages, an extended abstract appeared in ESA 201

    On Budget-Feasible Mechanism Design for Symmetric Submodular Objectives

    Full text link
    We study a class of procurement auctions with a budget constraint, where an auctioneer is interested in buying resources or services from a set of agents. Ideally, the auctioneer would like to select a subset of the resources so as to maximize his valuation function, without exceeding a given budget. As the resources are owned by strategic agents however, our overall goal is to design mechanisms that are truthful, budget-feasible, and obtain a good approximation to the optimal value. Budget-feasibility creates additional challenges, making several approaches inapplicable in this setting. Previous results on budget-feasible mechanisms have considered mostly monotone valuation functions. In this work, we mainly focus on symmetric submodular valuations, a prominent class of non-monotone submodular functions that includes cut functions. We begin first with a purely algorithmic result, obtaining a 2ee1\frac{2e}{e-1}-approximation for maximizing symmetric submodular functions under a budget constraint. We view this as a standalone result of independent interest, as it is the best known factor achieved by a deterministic algorithm. We then proceed to propose truthful, budget feasible mechanisms (both deterministic and randomized), paying particular attention on the Budgeted Max Cut problem. Our results significantly improve the known approximation ratios for these objectives, while establishing polynomial running time for cases where only exponential mechanisms were known. At the heart of our approach lies an appropriate combination of local search algorithms with results for monotone submodular valuations, applied to the derived local optima.Comment: A conference version appears in WINE 201
    corecore