2,572 research outputs found

    Tight Bounds for MIS in Multichannel Radio Networks

    Full text link
    Daum et al. [PODC'13] presented an algorithm that computes a maximal independent set (MIS) within O(log2n/F+lognpolyloglogn)O(\log^2 n/F+\log n \mathrm{polyloglog} n) rounds in an nn-node multichannel radio network with FF communication channels. The paper uses a multichannel variant of the standard graph-based radio network model without collision detection and it assumes that the network graph is a polynomially bounded independence graph (BIG), a natural combinatorial generalization of well-known geographic families. The upper bound of that paper is known to be optimal up to a polyloglog factor. In this paper, we adapt algorithm and analysis to improve the result in two ways. Mainly, we get rid of the polyloglog factor in the runtime and we thus obtain an asymptotically optimal multichannel radio network MIS algorithm. In addition, our new analysis allows to generalize the class of graphs from those with polynomially bounded local independence to graphs where the local independence is bounded by an arbitrary function of the neighborhood radius.Comment: 37 pages, to be published in DISC 201

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201

    Computing in Additive Networks with Bounded-Information Codes

    Full text link
    This paper studies the theory of the additive wireless network model, in which the received signal is abstracted as an addition of the transmitted signals. Our central observation is that the crucial challenge for computing in this model is not high contention, as assumed previously, but rather guaranteeing a bounded amount of \emph{information} in each neighborhood per round, a property that we show is achievable using a new random coding technique. Technically, we provide efficient algorithms for fundamental distributed tasks in additive networks, such as solving various symmetry breaking problems, approximating network parameters, and solving an \emph{asymmetry revealing} problem such as computing a maximal input. The key method used is a novel random coding technique that allows a node to successfully decode the received information, as long as it does not contain too many distinct values. We then design our algorithms to produce a limited amount of information in each neighborhood in order to leverage our enriched toolbox for computing in additive networks

    An efficient approximation to the correlated Nakagami-m sums and its application in equal gain diversity receivers

    Full text link
    There are several cases in wireless communications theory where the statistics of the sum of independent or correlated Nakagami-m random variables (RVs) is necessary to be known. However, a closed-form solution to the distribution of this sum does not exist when the number of constituent RVs exceeds two, even for the special case of Rayleigh fading. In this paper, we present an efficient closed-form approximation for the distribution of the sum of arbitrary correlated Nakagami-m envelopes with identical and integer fading parameters. The distribution becomes exact for maximal correlation, while the tightness of the proposed approximation is validated statistically by using the Chi-square and the Kolmogorov-Smirnov goodness-of-fit tests. As an application, the approximation is used to study the performance of equal-gain combining (EGC) systems operating over arbitrary correlated Nakagami-m fading channels, by utilizing the available analytical results for the error-rate performance of an equivalent maximal-ratio combining (MRC) system
    corecore