3,755 research outputs found

    An Evolutionary Argument for a Self-Explanatory, Benevolent Metaphysics

    Get PDF
    In this paper, a metaphysics is proposed that includes everything that can be represented by a well-founded multiset. It is shown that this metaphysics, apart from being self-explanatory, is also benevolent. Paradoxically, it turns out that the probability that we were born in another life than our own is zero. More insights are gained by inducing properties from a metaphysics that is not self-explanatory. In particular, digital metaphysics is analyzed, which claims that only computable things exist. First of all, it is shown that digital metaphysics contradicts itself by leading to the conclusion that the shortest computer program that computes the world is infinitely long. This means that the Church-Turing conjecture must be false. Secondly, the applicability of Occam’s razor is explained by evolution: in an evolving physics it can appear at each moment as if the world is caused by only finitely many things. Thirdly and most importantly, this metaphysics is benevolent in the sense that it organizes itself to fulfill the deepest wishes of its observers. Fourthly, universal computers with an infinite memory capacity cannot be built in the world. And finally, all the properties of the world, both good and bad, can be explained by evolutionary conservation

    The isometry degree of a computable copy of â„“p\ell^p

    Full text link
    When pp is a computable real so that p≥1p \geq 1, the isometry degree of a computable copy B\mathcal{B} of ℓp\ell^p is defined to be the least powerful Turing degree that computes a linear isometry of ℓp\ell^p onto B\mathcal{B}. We show that this degree always exists and that when p≠2p \neq 2 these degrees are precisely the c.e. degrees

    Beating the Generator-Enumeration Bound for pp-Group Isomorphism

    Full text link
    We consider the group isomorphism problem: given two finite groups G and H specified by their multiplication tables, decide if G cong H. For several decades, the n^(log_p n + O(1)) generator-enumeration bound (where p is the smallest prime dividing the order of the group) has been the best worst-case result for general groups. In this work, we show the first improvement over the generator-enumeration bound for p-groups, which are believed to be the hard case of the group isomorphism problem. We start by giving a Turing reduction from group isomorphism to n^((1 / 2) log_p n + O(1)) instances of p-group composition-series isomorphism. By showing a Karp reduction from p-group composition-series isomorphism to testing isomorphism of graphs of degree at most p + O(1) and applying algorithms for testing isomorphism of graphs of bounded degree, we obtain an n^(O(p)) time algorithm for p-group composition-series isomorphism. Combining these two results yields an algorithm for p-group isomorphism that takes at most n^((1 / 2) log_p n + O(p)) time. This algorithm is faster than generator-enumeration when p is small and slower when p is large. Choosing the faster algorithm based on p and n yields an upper bound of n^((1 / 2 + o(1)) log n) for p-group isomorphism.Comment: 15 pages. This is an updated and improved version of the results for p-groups in arXiv:1205.0642 and TR11-052 in ECC
    • …
    corecore