4 research outputs found

    Maximality in the ⍺-C.A. Degrees

    No full text
    In [4], Downey and Greenberg define the notion of totally ⍺-c.a. for appropriately small ordinals ⍺, and discuss the hierarchy this notion begets on the Turing degrees. The hierarchy is of particular interest because it has already given rise to several natural definability results, and provides a definable antichain in the c.e. degrees. Following on from the work of [4], we solve problems which are left open in the aforementioned relating to this hierarchy. Our proofs are all constructive, using strategy trees to build c.e. sets, usually with some form of permitting. We identify levels of the hierarchy where there is absolutely no collapse above any totally ⍺-c.a. c.e. degree, and construct, for every ⍺ ≼ ε0, both a totally ⍺-c.a. c.e. minimal cover and a chain of totally ⍺-c.a. c.e. degrees cofinal in the totally ⍺-c.a. c.e. degrees in the cone above the chain's least member

    Maximal Contiguous Degrees

    No full text
    . A computably enumerable (c.e.) degree is a maximal contiguous degree if it is contiguous and no c.e. degree strictly above it is contiguous. We show that there are infinitely many maximal contiguous degrees. Since the contiguous degrees are definable, the class of maximal contiguous degrees provides the first example of a definable infinite anti-chain in the c.e. degrees. In addition, we show that the class of maximal contiguous degrees forms an automorphism base for the c.e. degrees and therefore for the Turing degrees in general. Finally we note that the construction of a maximal contiguous degree can be modified to answer a question of Walk about the array computable degrees and a question of Li about isolated formulas. 1. Introduction. We will work within the c.e. Turing degrees, R, ordered by Turing reducibility, # t . (We will suppress the # t for readability.) Our concern is that of definability and, specifically, the relationships between automorphisms of R ..
    corecore