23,263 research outputs found

    On the "Fake" Inferred Entanglement Associated with the Maximum Entropy Inference of Quantum States

    Get PDF
    The inference of entangled quantum states by recourse to the maximum entropy principle is considered in connection with the recently pointed out problem of fake inferred entanglement [R. Horodecki, {\it et al.}, Phys. Rev. A {\it 59} (1999) 1799]. We show that there are operators A^\hat A, both diagonal and non diagonal in the Bell basis, such that when the expectation value is taken as prior information the problem of fake entanglement is not solved by adding a new constraint associated with the mean value of A^2\hat A^2 (unlike what happens when the partial information is given by the expectation value of a Bell operator). The fake entanglement generated by the maximum entropy principle is also studied quantitatively by comparing the entanglement of formation of the inferred state with that of the original one.Comment: 25 Revtex pages, 5 Postscript figures, submitted to J. Phys. A (Math. Gen.

    Modeling raccoon (Procyon lotor) habitat connectivity to identify potential corridors for rabies spread

    Get PDF
    The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Wildlife Services National Rabies Management Program has conducted cooperative oral rabies vaccination (ORV) programs since 1997. Understanding the eco-epidemiology of raccoon (Procyon lotor) variant rabies (raccoon rabies) is critical to successful management. Pine (Pinus spp.)-dominated landscapes generally support low relative raccoon densities that may inhibit rabies spread. However, confounding landscape features, such as wetlands and human development, represent potentially elevated risk corridors for rabies spread, possibly imperiling enhanced rabies surveillance and ORV planning. Raccoon habitat suitability in pine-dominated landscapes in Massachusetts, Florida, and Alabama was modeled by the maximum entropy (Maxent) procedure using raccoon presence, and landscape and environmental data. Replicated (n = 100/state) bootstrapped Maxent models based on raccoon sampling locations from 2012–2014 indicated that soil type was the most influential variable in Alabama (permutation importance PI = 38.3), which, based on its relation to landcover type and resource distribution and abundance, was unsurprising. Precipitation (PI = 46.9) and temperature (PI = 52.1) were the most important variables in Massachusetts and Florida, but these possibly spurious results require further investigation. The Alabama Maxent probability surface map was ingested into Circuitscape for conductance visualizations of potential areas of habitat connectivity. Incorporating these and future results into raccoon rabies containment and elimination strategies could result in significant cost-savings for rabies management here and elsewhere

    Explicit probabilistic models for databases and networks

    Full text link
    Recent work in data mining and related areas has highlighted the importance of the statistical assessment of data mining results. Crucial to this endeavour is the choice of a non-trivial null model for the data, to which the found patterns can be contrasted. The most influential null models proposed so far are defined in terms of invariants of the null distribution. Such null models can be used by computation intensive randomization approaches in estimating the statistical significance of data mining results. Here, we introduce a methodology to construct non-trivial probabilistic models based on the maximum entropy (MaxEnt) principle. We show how MaxEnt models allow for the natural incorporation of prior information. Furthermore, they satisfy a number of desirable properties of previously introduced randomization approaches. Lastly, they also have the benefit that they can be represented explicitly. We argue that our approach can be used for a variety of data types. However, for concreteness, we have chosen to demonstrate it in particular for databases and networks.Comment: Submitte

    Jaynes' MaxEnt, Steady State Flow Systems and the Maximum Entropy Production Principle

    Full text link
    Jaynes' maximum entropy (MaxEnt) principle was recently used to give a conditional, local derivation of the ``maximum entropy production'' (MEP) principle, which states that a flow system with fixed flow(s) or gradient(s) will converge to a steady state of maximum production of thermodynamic entropy (R.K. Niven, Phys. Rev. E, in press). The analysis provides a steady state analog of the MaxEnt formulation of equilibrium thermodynamics, applicable to many complex flow systems at steady state. The present study examines the classification of physical systems, with emphasis on the choice of constraints in MaxEnt. The discussion clarifies the distinction between equilibrium, fluid flow, source/sink, flow/reactive and other systems, leading into an appraisal of the application of MaxEnt to steady state flow and reactive systems.Comment: 6 pages; paper for MaxEnt0
    corecore