25,782 research outputs found

    Analysis of A Nonsmooth Optimization Approach to Robust Estimation

    Full text link
    In this paper, we consider the problem of identifying a linear map from measurements which are subject to intermittent and arbitarily large errors. This is a fundamental problem in many estimation-related applications such as fault detection, state estimation in lossy networks, hybrid system identification, robust estimation, etc. The problem is hard because it exhibits some intrinsic combinatorial features. Therefore, obtaining an effective solution necessitates relaxations that are both solvable at a reasonable cost and effective in the sense that they can return the true parameter vector. The current paper discusses a nonsmooth convex optimization approach and provides a new analysis of its behavior. In particular, it is shown that under appropriate conditions on the data, an exact estimate can be recovered from data corrupted by a large (even infinite) number of gross errors.Comment: 17 pages, 9 figure

    On a class of optimization-based robust estimators

    Full text link
    We consider in this paper the problem of estimating a parameter matrix from observations which are affected by two types of noise components: (i) a sparse noise sequence which, whenever nonzero can have arbitrarily large amplitude (ii) and a dense and bounded noise sequence of "moderate" amount. This is termed a robust regression problem. To tackle it, a quite general optimization-based framework is proposed and analyzed. When only the sparse noise is present, a sufficient bound is derived on the number of nonzero elements in the sparse noise sequence that can be accommodated by the estimator while still returning the true parameter matrix. While almost all the restricted isometry-based bounds from the literature are not verifiable, our bound can be easily computed through solving a convex optimization problem. Moreover, empirical evidence tends to suggest that it is generally tight. If in addition to the sparse noise sequence, the training data are affected by a bounded dense noise, we derive an upper bound on the estimation error.Comment: To appear in IEEE Transactions on Automatic Contro

    Stable low-rank matrix recovery via null space properties

    Full text link
    The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas. In order to derive rigorous recovery results, the measurement map is usually modeled probabilistically. We derive sufficient conditions on the minimal amount of measurements ensuring recovery via convex optimization. We establish our results via certain properties of the null space of the measurement map. In the setting where the measurements are realized as Frobenius inner products with independent standard Gaussian random matrices we show that 10r(n1+n2)10 r (n_1 + n_2) measurements are enough to uniformly and stably recover an n1×n2n_1 \times n_2 matrix of rank at most rr. We then significantly generalize this result by only requiring independent mean-zero, variance one entries with four finite moments at the cost of replacing 1010 by some universal constant. We also study the case of recovering Hermitian rank-rr matrices from measurement matrices proportional to rank-one projectors. For mCrnm \geq C r n rank-one projective measurements onto independent standard Gaussian vectors, we show that nuclear norm minimization uniformly and stably reconstructs Hermitian rank-rr matrices with high probability. Next, we partially de-randomize this by establishing an analogous statement for projectors onto independent elements of a complex projective 4-designs at the cost of a slightly higher sampling rate mCrnlognm \geq C rn \log n. Moreover, if the Hermitian matrix to be recovered is known to be positive semidefinite, then we show that the nuclear norm minimization approach may be replaced by minimizing the 2\ell_2-norm of the residual subject to the positive semidefinite constraint. Then no estimate of the noise level is required a priori. We discuss applications in quantum physics and the phase retrieval problem.Comment: 26 page
    corecore