27 research outputs found

    The Limits of Post-Selection Generalization

    Full text link
    While statistics and machine learning offers numerous methods for ensuring generalization, these methods often fail in the presence of adaptivity---the common practice in which the choice of analysis depends on previous interactions with the same dataset. A recent line of work has introduced powerful, general purpose algorithms that ensure post hoc generalization (also called robust or post-selection generalization), which says that, given the output of the algorithm, it is hard to find any statistic for which the data differs significantly from the population it came from. In this work we show several limitations on the power of algorithms satisfying post hoc generalization. First, we show a tight lower bound on the error of any algorithm that satisfies post hoc generalization and answers adaptively chosen statistical queries, showing a strong barrier to progress in post selection data analysis. Second, we show that post hoc generalization is not closed under composition, despite many examples of such algorithms exhibiting strong composition properties

    Differential Privacy for Sequential Algorithms

    Full text link
    We study the differential privacy of sequential statistical inference and learning algorithms that are characterized by random termination time. Using the two examples: sequential probability ratio test and sequential empirical risk minimization, we show that the number of steps such algorithms execute before termination can jeopardize the differential privacy of the input data in a similar fashion as their outputs, and it is impossible to use the usual Laplace mechanism to achieve standard differentially private in these examples. To remedy this, we propose a notion of weak differential privacy and demonstrate its equivalence to the standard case for large i.i.d. samples. We show that using the Laplace mechanism, weak differential privacy can be achieved for both the sequential probability ratio test and the sequential empirical risk minimization with proper performance guarantees. Finally, we provide preliminary experimental results on the Breast Cancer Wisconsin (Diagnostic) and Landsat Satellite Data Sets from the UCI repository
    corecore