1,944 research outputs found

    On the rank functions of H\mathcal{H}-matroids

    Full text link
    The notion of H\mathcal{H}-matroids was introduced by U. Faigle and S. Fujishige in 2009 as a general model for matroids and the greedy algorithm. They gave a characterization of H\mathcal{H}-matroids by the greedy algorithm. In this note, we give a characterization of some H\mathcal{H}-matroids by rank functions.Comment: 6 page

    Submodular linear programs on forests

    Get PDF
    A general linear programming model for an order-theoretic analysis of both Edmonds' greedy algorithm for matroids and the NW-corner rule for transportation problems with Monge costs is introduced. This approach includes the model of Queyranne, Spieksma and Tardella (1993) as a special case. We solve the problem by optimal greedy algorithms for rooted forests as underlying structures. Other solvable cases are also discussed

    The Submodular Secretary Problem Goes Linear

    Full text link
    During the last decade, the matroid secretary problem (MSP) became one of the most prominent classes of online selection problems. Partially linked to its numerous applications in mechanism design, substantial interest arose also in the study of nonlinear versions of MSP, with a focus on the submodular matroid secretary problem (SMSP). So far, O(1)-competitive algorithms have been obtained for SMSP over some basic matroid classes. This created some hope that, analogously to the matroid secretary conjecture, one may even obtain O(1)-competitive algorithms for SMSP over any matroid. However, up to now, most questions related to SMSP remained open, including whether SMSP may be substantially more difficult than MSP; and more generally, to what extend MSP and SMSP are related. Our goal is to address these points by presenting general black-box reductions from SMSP to MSP. In particular, we show that any O(1)-competitive algorithm for MSP, even restricted to a particular matroid class, can be transformed in a black-box way to an O(1)-competitive algorithm for SMSP over the same matroid class. This implies that the matroid secretary conjecture is equivalent to the same conjecture for SMSP. Hence, in this sense SMSP is not harder than MSP. Also, to find O(1)-competitive algorithms for SMSP over a particular matroid class, it suffices to consider MSP over the same matroid class. Using our reductions we obtain many first and improved O(1)-competitive algorithms for SMSP over various matroid classes by leveraging known algorithms for MSP. Moreover, our reductions imply an O(loglog(rank))-competitive algorithm for SMSP, thus, matching the currently best asymptotic algorithm for MSP, and substantially improving on the previously best O(log(rank))-competitive algorithm for SMSP

    Streaming Algorithms for Submodular Function Maximization

    Full text link
    We consider the problem of maximizing a nonnegative submodular set function f:2NR+f:2^{\mathcal{N}} \rightarrow \mathbb{R}^+ subject to a pp-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and monotone submodular functions. The main result is for submodular functions that are {\em non-monotone}. We describe deterministic and randomized algorithms that obtain a Ω(1p)\Omega(\frac{1}{p})-approximation using O(klogk)O(k \log k)-space, where kk is an upper bound on the cardinality of the desired set. The model assumes value oracle access to ff and membership oracles for the matroids defining the pp-matchoid constraint.Comment: 29 pages, 7 figures, extended abstract to appear in ICALP 201

    Mechanism Design via Correlation Gap

    Full text link
    For revenue and welfare maximization in single-dimensional Bayesian settings, Chawla et al. (STOC10) recently showed that sequential posted-price mechanisms (SPMs), though simple in form, can perform surprisingly well compared to the optimal mechanisms. In this paper, we give a theoretical explanation of this fact, based on a connection to the notion of correlation gap. Loosely speaking, for auction environments with matroid constraints, we can relate the performance of a mechanism to the expectation of a monotone submodular function over a random set. This random set corresponds to the winner set for the optimal mechanism, which is highly correlated, and corresponds to certain demand set for SPMs, which is independent. The notion of correlation gap of Agrawal et al.\ (SODA10) quantifies how much we {}"lose" in the expectation of the function by ignoring correlation in the random set, and hence bounds our loss in using certain SPM instead of the optimal mechanism. Furthermore, the correlation gap of a monotone and submodular function is known to be small, and it follows that certain SPM can approximate the optimal mechanism by a good constant factor. Exploiting this connection, we give tight analysis of a greedy-based SPM of Chawla et al.\ for several environments. In particular, we show that it gives an e/(e1)e/(e-1)-approximation for matroid environments, gives asymptotically a 1/(11/2πk)1/(1-1/\sqrt{2\pi k})-approximation for the important sub-case of kk-unit auctions, and gives a (p+1)(p+1)-approximation for environments with pp-independent set system constraints
    corecore