6,981 research outputs found

    Explicit constructions of point sets and sequences with low discrepancy

    Full text link
    In this article we survey recent results on the explicit construction of finite point sets and infinite sequences with optimal order of Lq\mathcal{L}_q discrepancy. In 1954 Roth proved a lower bound for the L2\mathcal{L}_2 discrepancy of finite point sets in the unit cube of arbitrary dimension. Later various authors extended Roth's result to lower bounds also for the Lq\mathcal{L}_q discrepancy and for infinite sequences. While it was known already from the early 1980s on that Roth's lower bound is best possible in the order of magnitude, it was a longstanding open question to find explicit constructions of point sets and sequences with optimal order of L2\mathcal{L}_2 discrepancy. This problem was solved by Chen and Skriganov in 2002 for finite point sets and recently by the authors of this article for infinite sequences. These constructions can also be extended to give optimal order of the Lq\mathcal{L}_q discrepancy of finite point sets for q∈(1,∞)q \in (1,\infty). The main aim of this article is to give an overview of these constructions and related results

    Recent advances in higher order quasi-Monte Carlo methods

    Full text link
    In this article we review some of recent results on higher order quasi-Monte Carlo (HoQMC) methods. After a seminal work by Dick (2007, 2008) who originally introduced the concept of HoQMC, there have been significant theoretical progresses on HoQMC in terms of discrepancy as well as multivariate numerical integration. Moreover, several successful and promising applications of HoQMC to partial differential equations with random coefficients and Bayesian estimation/inversion problems have been reported recently. In this article we start with standard quasi-Monte Carlo methods based on digital nets and sequences in the sense of Niederreiter, and then move onto their higher order version due to Dick. The Walsh analysis of smooth functions plays a crucial role in developing the theory of HoQMC, and the aim of this article is to provide a unified picture on how the Walsh analysis enables recent developments of HoQMC both for discrepancy and numerical integration
    • …
    corecore