66,503 research outputs found

    Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    Full text link
    Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring

    Revisiting Kernelized Locality-Sensitive Hashing for Improved Large-Scale Image Retrieval

    Full text link
    We present a simple but powerful reinterpretation of kernelized locality-sensitive hashing (KLSH), a general and popular method developed in the vision community for performing approximate nearest-neighbor searches in an arbitrary reproducing kernel Hilbert space (RKHS). Our new perspective is based on viewing the steps of the KLSH algorithm in an appropriately projected space, and has several key theoretical and practical benefits. First, it eliminates the problematic conceptual difficulties that are present in the existing motivation of KLSH. Second, it yields the first formal retrieval performance bounds for KLSH. Third, our analysis reveals two techniques for boosting the empirical performance of KLSH. We evaluate these extensions on several large-scale benchmark image retrieval data sets, and show that our analysis leads to improved recall performance of at least 12%, and sometimes much higher, over the standard KLSH method.Comment: 15 page

    Regression on fixed-rank positive semidefinite matrices: a Riemannian approach

    Full text link
    The paper addresses the problem of learning a regression model parameterized by a fixed-rank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixed-rank positive semidefinite matrices. In contrast with previous contributions in the literature, no restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain a linear complexity in the problem size and enjoy important invariance properties. We apply the proposed algorithms to the problem of learning a distance function parameterized by a positive semidefinite matrix. Good performance is observed on classical benchmarks
    • …
    corecore