9,881 research outputs found

    Bellman Error Based Feature Generation using Random Projections on Sparse Spaces

    Full text link
    We address the problem of automatic generation of features for value function approximation. Bellman Error Basis Functions (BEBFs) have been shown to improve the error of policy evaluation with function approximation, with a convergence rate similar to that of value iteration. We propose a simple, fast and robust algorithm based on random projections to generate BEBFs for sparse feature spaces. We provide a finite sample analysis of the proposed method, and prove that projections logarithmic in the dimension of the original space are enough to guarantee contraction in the error. Empirical results demonstrate the strength of this method

    Dispelling Classes Gradually to Improve Quality of Feature Reduction Approaches

    Full text link
    Feature reduction is an important concept which is used for reducing dimensions to decrease the computation complexity and time of classification. Since now many approaches have been proposed for solving this problem, but almost all of them just presented a fix output for each input dataset that some of them aren't satisfied cases for classification. In this we proposed an approach as processing input dataset to increase accuracy rate of each feature extraction methods. First of all, a new concept called dispelling classes gradually (DCG) is proposed to increase separability of classes based on their labels. Next, this method is used to process input dataset of the feature reduction approaches to decrease the misclassification error rate of their outputs more than when output is achieved without any processing. In addition our method has a good quality to collate with noise based on adapting dataset with feature reduction approaches. In the result part, two conditions (With process and without that) are compared to support our idea by using some of UCI datasets.Comment: 11 Pages, 5 Figure, 7 Tables; Advanced Computing: An International Journal (ACIJ), Vol.3, No.3, May 201

    Locality Preserving Projections for Grassmann manifold

    Full text link
    Learning on Grassmann manifold has become popular in many computer vision tasks, with the strong capability to extract discriminative information for imagesets and videos. However, such learning algorithms particularly on high-dimensional Grassmann manifold always involve with significantly high computational cost, which seriously limits the applicability of learning on Grassmann manifold in more wide areas. In this research, we propose an unsupervised dimensionality reduction algorithm on Grassmann manifold based on the Locality Preserving Projections (LPP) criterion. LPP is a commonly used dimensionality reduction algorithm for vector-valued data, aiming to preserve local structure of data in the dimension-reduced space. The strategy is to construct a mapping from higher dimensional Grassmann manifold into the one in a relative low-dimensional with more discriminative capability. The proposed method can be optimized as a basic eigenvalue problem. The performance of our proposed method is assessed on several classification and clustering tasks and the experimental results show its clear advantages over other Grassmann based algorithms.Comment: Accepted by IJCAI 201
    • …
    corecore