782 research outputs found

    Matrix-Monotonic Optimization for MIMO Systems

    Full text link
    For MIMO systems, due to the deployment of multiple antennas at both the transmitter and the receiver, the design variables e.g., precoders, equalizers, training sequences, etc. are usually matrices. It is well known that matrix operations are usually more complicated compared to their vector counterparts. In order to overcome the high complexity resulting from matrix variables, in this paper we investigate a class of elegant multi-objective optimization problems, namely matrix-monotonic optimization problems (MMOPs). In our work, various representative MIMO optimization problems are unified into a framework of matrix-monotonic optimization, which includes linear transceiver design, nonlinear transceiver design, training sequence design, radar waveform optimization, the corresponding robust design and so on as its special cases. Then exploiting the framework of matrix-monotonic optimization the optimal structures of the considered matrix variables can be derived first. Based on the optimal structure, the matrix-variate optimization problems can be greatly simplified into the ones with only vector variables. In particular, the dimension of the new vector variable is equal to the minimum number of columns and rows of the original matrix variable. Finally, we also extend our work to some more general cases with multiple matrix variables.Comment: 37 Pages, 5 figures, IEEE Transactions on Signal Processing, Final Versio

    Real and Complex Monotone Communication Games

    Full text link
    Noncooperative game-theoretic tools have been increasingly used to study many important resource allocation problems in communications, networking, smart grids, and portfolio optimization. In this paper, we consider a general class of convex Nash Equilibrium Problems (NEPs), where each player aims to solve an arbitrary smooth convex optimization problem. Differently from most of current works, we do not assume any specific structure for the players' problems, and we allow the optimization variables of the players to be matrices in the complex domain. Our main contribution is the design of a novel class of distributed (asynchronous) best-response- algorithms suitable for solving the proposed NEPs, even in the presence of multiple solutions. The new methods, whose convergence analysis is based on Variational Inequality (VI) techniques, can select, among all the equilibria of a game, those that optimize a given performance criterion, at the cost of limited signaling among the players. This is a major departure from existing best-response algorithms, whose convergence conditions imply the uniqueness of the NE. Some of our results hinge on the use of VI problems directly in the complex domain; the study of these new kind of VIs also represents a noteworthy innovative contribution. We then apply the developed methods to solve some new generalizations of SISO and MIMO games in cognitive radios and femtocell systems, showing a considerable performance improvement over classical pure noncooperative schemes.Comment: to appear on IEEE Transactions in Information Theor

    Event-Driven Optimal Feedback Control for Multi-Antenna Beamforming

    Full text link
    Transmit beamforming is a simple multi-antenna technique for increasing throughput and the transmission range of a wireless communication system. The required feedback of channel state information (CSI) can potentially result in excessive overhead especially for high mobility or many antennas. This work concerns efficient feedback for transmit beamforming and establishes a new approach of controlling feedback for maximizing net throughput, defined as throughput minus average feedback cost. The feedback controller using a stationary policy turns CSI feedback on/off according to the system state that comprises the channel state and transmit beamformer. Assuming channel isotropy and Markovity, the controller's state reduces to two scalars. This allows the optimal control policy to be efficiently computed using dynamic programming. Consider the perfect feedback channel free of error, where each feedback instant pays a fixed price. The corresponding optimal feedback control policy is proved to be of the threshold type. This result holds regardless of whether the controller's state space is discretized or continuous. Under the threshold-type policy, feedback is performed whenever a state variable indicating the accuracy of transmit CSI is below a threshold, which varies with channel power. The practical finite-rate feedback channel is also considered. The optimal policy for quantized feedback is proved to be also of the threshold type. The effect of CSI quantization is shown to be equivalent to an increment on the feedback price. Moreover, the increment is upper bounded by the expected logarithm of one minus the quantization error. Finally, simulation shows that feedback control increases net throughput of the conventional periodic feedback by up to 0.5 bit/s/Hz without requiring additional bandwidth or antennas.Comment: 29 pages; submitted for publicatio
    • …
    corecore