408,448 research outputs found

    From Reflection Equation Algebra to Braided Yangians

    Full text link
    In general, quantum matrix algebras are associated with a couple of compatible braidings. A particular example of such an algebra is the so-called Reflection Equation algebra. In this paper we analyse its specific properties, which distinguish it from other quantum matrix algebras (in first turn, from the RTT one). Thus, we exhibit a specific form of the Cayley-Hamilton identity for its generating matrix, which in a limit turns into the Cayley-Hamilton identity for the generating matrix of the enveloping algebra U(gl(m)). Also, we consider some specific properties of the braided Yangians, recently introduced by the authors. In particular, we establish an analog of the Cayley-Hamilton identity for the generating matrix of such a braided Yangian. Besides, by passing to a limit of the braided Yangian, we get a Lie algebra similar to that entering the construction of the rational Gaudin model. In its enveloping algebra we construct a Bethe subalgebra by the method due to D.Talalaev

    Quantum groups, Yang-Baxter maps and quasi-determinants

    Full text link
    For any quasi-triangular Hopf algebra, there exists the universal R-matrix, which satisfies the Yang-Baxter equation. It is known that the adjoint action of the universal R-matrix on the elements of the tensor square of the algebra constitutes a quantum Yang-Baxter map, which satisfies the set-theoretic Yang-Baxter equation. The map has a zero curvature representation among L-operators defined as images of the universal R-matrix. We find that the zero curvature representation can be solved by the Gauss decomposition of a product of L-operators. Thereby obtained a quasi-determinant expression of the quantum Yang-Baxter map associated with the quantum algebra Uq(gl(n))U_{q}(gl(n)). Moreover, the map is identified with products of quasi-Pl\"{u}cker coordinates over a matrix composed of the L-operators. We also consider the quasi-classical limit, where the underlying quantum algebra reduces to a Poisson algebra. The quasi-determinant expression of the quantum Yang-Baxter map reduces to ratios of determinants, which give a new expression of a classical Yang-Baxter map.Comment: 46 page

    A braided Yang-Baxter Algebra in a Theory of two coupled Lattice Quantum KdV: algebraic properties and ABA representations

    Full text link
    A generalization of the Yang-Baxter algebra is found in quantizing the monodromy matrix of two (m)KdV equations discretized on a space lattice. This braided Yang-Baxter equation still ensures that the transfer matrix generates operators in involution which form the Cartan sub-algebra of the braided quantum group. Representations diagonalizing these operators are described through relying on an easy generalization of Algebraic Bethe Ansatz techniques. The conjecture that this monodromy matrix algebra leads, {\it in the cylinder continuum limit}, to a Perturbed Minimal Conformal Field Theory description is analysed and supported.Comment: Latex file, 46 page
    corecore