16,177 research outputs found

    Multispectral Image Analysis using Decision Trees

    Get PDF
    Many machine learning algorithms have been used to classify pixels in Landsat imagery. The maximum likelihood classifier is the widely-accepted classifier. Non-parametric methods of classification include neural networks and decision trees. In this research work, we implemented decision trees using the C4.5 algorithm to classify pixels of a scene from Juneau, Alaska area obtained with Landsat 8, Operation Land Imager (OLI). One of the concerns with decision trees is that they are often over fitted with training set data, which yields less accuracy in classifying unknown data. To study the effect of overfitting, we have considered noisy training set data and built decision trees using randomly-selected training samples with variable sample sizes. One of the ways to overcome the overfitting problem is pruning a decision tree. We have generated pruned trees with data sets of various sizes and compared the accuracy obtained with pruned trees to the accuracy obtained with full decision trees. Furthermore, we extracted knowledge regarding classification rules from the pruned tree. To validate the rules, we built a fuzzy inference system (FIS) and reclassified the dataset. In designing the FIS, we used threshold values obtained from extracted rules to define input membership functions and used the extracted rules as the rule-base. The classification results obtained from decision trees and the FIS are evaluated using the overall accuracy obtained from the confusion matrix

    A Concurrent Fuzzy-Neural Network Approach for Decision Support Systems

    Full text link
    Decision-making is a process of choosing among alternative courses of action for solving complicated problems where multi-criteria objectives are involved. The past few years have witnessed a growing recognition of Soft Computing technologies that underlie the conception, design and utilization of intelligent systems. Several works have been done where engineers and scientists have applied intelligent techniques and heuristics to obtain optimal decisions from imprecise information. In this paper, we present a concurrent fuzzy-neural network approach combining unsupervised and supervised learning techniques to develop the Tactical Air Combat Decision Support System (TACDSS). Experiment results clearly demonstrate the efficiency of the proposed technique

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.
    corecore