36,447 research outputs found

    From Schritte and Wechsel to Coxeter Groups

    Full text link
    The PLR-moves of neo-Riemannian theory, when considered as reflections on the edges of an equilateral triangle, define the Coxeter group S~3\widetilde S_3. The elements are in a natural one-to-one correspondence with the triangles in the infinite Tonnetz. The left action of S~3\widetilde S_3 on the Tonnetz gives rise to interesting chord sequences. We compare the system of transformations in S~3\widetilde S_3 with the system of Schritte and Wechsel introduced by Hugo Riemann in 1880. Finally, we consider the point reflection group as it captures well the transition from Riemann's infinite Tonnetz to the finite Tonnetz of neo-Riemannian theory.Comment: 14 pages for the Mathematics and Computation in Music Conference in June 2019 in Madrid, the revised version extends the music theoretic discussio

    Harmonic qualities in Debussy's "Les sons et les parfums tournent dans l'air du soir"

    Full text link
    This analysis of the fourth piece from Debussy's Préludes Book I illustrates typical harmonic techniques of Debussy as manipulations of harmonic qualities. We quantify harmonic qualities via the magnitudes and squared-magnitudes of the coefficients of the discrete Fourier transform (DFT) of pitch class sets, following Ian Quinn. The principal activity of the piece occurs in the fourth and fifth coefficients, the octatonic and diatonic qualities, respectively. The development of harmonic ideas can therefore be mapped out in a two-dimensional octatonic/diatonic phase space. Whole-tone material, representative of the sixth coefficient of the DFT, also plays an important role. I discuss Debussy's motivic work, how features of tonality – diatonicity and harmonic function – relate to his musical language, and the significance of perfectly balanced set classes, which are a special case of nil DFT coefficients.Accepted manuscrip

    Generalized Tonnetze and Zeitnetze, and the topology of music concepts

    Full text link
    The music-theoretic idea of a Tonnetz can be generalized at different levels: as a network of chords relating by maximal intersection, a simplicial complex in which vertices represent notes and simplices represent chords, and as a triangulation of a manifold or other geometrical space. The geometrical construct is of particular interest, in that allows us to represent inherently topological aspects to important musical concepts. Two kinds of music-theoretical geometry have been proposed that can house Tonnetze: geometrical duals of voice-leading spaces and Fourier phase spaces. Fourier phase spaces are particularly appropriate for Tonnetze in that their objects are pitch-class distributions (real-valued weightings of the 12 pitch classes) and proximity in these space relates to shared pitch-class content. They admit of a particularly general method of constructing a geometrical Tonnetz that allows for interval and chord duplications in a toroidal geometry. This article examines how these duplications can relate to important musical concepts such as key or pitch height, and details a method of removing such redundancies and the resulting changes to the homology of the space. The method also transfers to the rhythmic domain, defining Zeitnetze for cyclic rhythms. A number of possible Tonnetze are illustrated: on triads, seventh chords, ninth chords, scalar tetrachords, scales, etc., as well as Zeitnetze on common cyclic rhythms or timelines. Their different topologies – whether orientable, bounded, manifold, etc. – reveal some of the topological character of musical concepts.Accepted manuscrip

    Decontextualizing contextual inversion

    Full text link
    Contextual inversion, introduced as an analytical tool by David Lewin, is a concept of wide reach and value in music theory and analysis, at the root of neo-Riemannian theory as well as serial theory, and useful for a range of analytical applications. A shortcoming of contextual inversion as it is currently understood, however, is, as implied by the name, that the transformation has to be defined anew for each application. This is potentially a virtue, requiring the analyst to invest the transformational system with meaning in order to construct it in the first place. However, there are certainly instances where new transformational systems are continually redefined for essentially the same purposes. This paper explores some of the most common theoretical bases for contextual inversion groups and considers possible definitions of inversion operators that can apply across set class types, effectively decontextualizing contextual inversions.Accepted manuscrip
    • …
    corecore