790 research outputs found

    Radiotherapy planning for glioblastoma based on a tumor growth model: Improving target volume delineation

    Get PDF
    Glioblastoma are known to infiltrate the brain parenchyma instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In clinical practice, a uniform margin is applied to account for microscopic spread of disease. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth: Anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. A retrospective study involving 10 glioblastoma patients has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most crucial model input. We conclude that the tumor growth model provides a method to account for anisotropic growth patterns of glioblastoma, and may therefore provide a tool to make target delineation more objective and automated

    A generative approach for image-based modeling of tumor growth

    Get PDF
    22nd International Conference, IPMI 2011, Kloster Irsee, Germany, July 3-8, 2011. ProceedingsExtensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multi-modal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models.German Academy of Sciences Leopoldina (Fellowship Programme LPDS 2009-10)Academy of Finland (133611)National Institutes of Health (U.S.) (NIBIB NAMIC U54-EB005149)National Institutes of Health (U.S.) (NCRR NAC P41- RR13218)National Institutes of Health (U.S.) (NINDS R01-NS051826)National Institutes of Health (U.S.) (NIH R01-NS052585)National Institutes of Health (U.S.) (NIH R01-EB006758)National Institutes of Health (U.S.) (NIH R01-EB009051)National Institutes of Health (U.S.) (NIH P41-RR014075)National Science Foundation (U.S.) (CAREER Award 0642971
    • …
    corecore