970,036 research outputs found

    p-Adic Mathematical Physics

    Full text link
    A brief review of some selected topics in p-adic mathematical physics is presented.Comment: 36 page

    Physics in Riemann's mathematical papers

    Full text link
    Riemann's mathematical papers contain many ideas that arise from physics, and some of them are motivated by problems from physics. In fact, it is not easy to separate Riemann's ideas in mathematics from those in physics. Furthermore, Riemann's philosophical ideas are often in the background of his work on science. The aim of this chapter is to give an overview of Riemann's mathematical results based on physical reasoning or motivated by physics. We also elaborate on the relation with philosophy. While we discuss some of Riemann's philosophical points of view, we review some ideas on the same subjects emitted by Riemann's predecessors, and in particular Greek philosophers, mainly the pre-socratics and Aristotle. The final version of this paper will appear in the book: From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017

    A framework for the natures of negativity in introductory physics

    Get PDF
    Mathematical reasoning skills are a desired outcome of many introductory physics courses, particularly calculus-based physics courses. Positive and negative quantities are ubiquitous in physics, and the sign carries important and varied meanings. Novices can struggle to understand the many roles signed numbers play in physics contexts, and recent evidence shows that unresolved struggle can carry over to subsequent physics courses. The mathematics education research literature documents the cognitive challenge of conceptualizing negative numbers as mathematical objects--both for experts, historically, and for novices as they learn. We contribute to the small but growing body of research in physics contexts that examines student reasoning about signed quantities and reasoning about the use and interpretation of signs in mathematical models. In this paper we present a framework for categorizing various meanings and interpretations of the negative sign in physics contexts, inspired by established work in algebra contexts from the mathematics education research community. Such a framework can support innovation that can catalyze deeper mathematical conceptualizations of signed quantities in the introductory courses and beyond
    corecore