1,398 research outputs found

    Mathematical Model of the Impulses Transformation Processes in Natural Neurons for Biologically Inspired Control Systems Development

    Get PDF
    Abstract. One of the trends in the development of control systems for autonomous mobile robots is the approach of using neural networks with biologically plausible architecture. Formal neurons do not take into account some important properties of a biological neuron, which are necessary for this task. Namely -a consideration of the dynamics of data changing in neural networks; difficulties in describing the structure of the network, which cannot be reduced to the known regular architectures; as well as difficulties in the implementation of biologically plausible learning algorithms for such networks. Existing neurophysiological models of neurons describe chemical processes occurring in a cell, which is too low level of abstraction. The paper proposes a neuron's model, which is devoid of disadvantages described above. The feature of this model is description cell possibility with treestructured architecture dendrites. All functional changes are formed by modifying structural organization of membrane and synapses instead of parametric tuning. The paper also contains some examples of neural structures for motion control based on this model of a neuron and similar to biological structures of the peripheral nervous system

    Synthesis of neural networks for spatio-temporal spike pattern recognition and processing

    Get PDF
    The advent of large scale neural computational platforms has highlighted the lack of algorithms for synthesis of neural structures to perform predefined cognitive tasks. The Neural Engineering Framework offers one such synthesis, but it is most effective for a spike rate representation of neural information, and it requires a large number of neurons to implement simple functions. We describe a neural network synthesis method that generates synaptic connectivity for neurons which process time-encoded neural signals, and which makes very sparse use of neurons. The method allows the user to specify, arbitrarily, neuronal characteristics such as axonal and dendritic delays, and synaptic transfer functions, and then solves for the optimal input-output relationship using computed dendritic weights. The method may be used for batch or online learning and has an extremely fast optimization process. We demonstrate its use in generating a network to recognize speech which is sparsely encoded as spike times.Comment: In submission to Frontiers in Neuromorphic Engineerin

    Brain in the data : neurotechnology in AI systems and management applications

    Get PDF
    Article translated from Russian. First published in: АгССв А.И. НСйротСхнологии Π² систСмах искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° ΠΈ примСнСния Π² сфСрС управлСния, Π² ΠΊΠ½ΠΈΠ³Π΅ Π‘ΠΎΡ†ΠΈΠΎΠ³ΡƒΠΌΠ°Π½ΠΈΡ‚Π°Ρ€Π½Ρ‹Π΅ аспСкты Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… трансформаций искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° ΠΏΠΎΠ΄ Ρ€Π΅Π΄Π°ΠΊΡ†ΠΈΠ΅ΠΉ Π’.Π•. ЛСпского, А.Н. Π Π°ΠΉΠΊΠΎΠ²Π°. Москва, ΠšΠΎΠ³ΠΈΡ‚ΠΎ-Π¦Π΅Π½Ρ‚Ρ€. 2022. 308 с. (201-212). (V.E. Lepsky/ A.N. Raikov, Socio-humanitarian Aspects of Digital Transformations and Artificial Intelligence, Kogito Center, Moscow 2022, 201-212)

    The Software Continuum Concept: Towards a Biologically Inspired Model for Robust E-Business Software Automation

    Get PDF
    This paper introduces a new concept, the software continuum concept based on the observation that exists a general parallelism between the software continuum from bits to business/Internet ecosystems and the natural continuum from particles to ecosystems. The general parallelism suggests that homeomorphisms may be identified and therefore some concepts, processes, and/or mechanisms in one continuum can be investigated for application in the other continuum. We argue that the homeomorphisms give rise to a biologically-inspired architectural framework for addressing robust control, robust intelligence, and robust autonomy issues in e-business software and other business-IT integration challenges. As application, we examine the mapping of a major enterprise-level architecture framework to the biologically-inspired framework. Design considerations for robust intelligence and autonomy in large-scale software automation and some major systemic features for flexible business-IT integration are also discussed

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ сСгмСнтной спайковой ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π° со структурной Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠ΅ΠΉ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ классификации

    Get PDF
    Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ примСнСния сСгмСнтной спайковой ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π° с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ структурной Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ классификации. ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ Π°Π½Π°Π»ΠΈΠ· соврСмСнного состояния спайковых Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй. ДСлаСтся Π²Ρ‹Π²ΠΎΠ΄ ΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ Π½ΠΈΠ·ΠΊΠΎΠΌ количСствС Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ исслСдованию сСгмСнтных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π΅ΠΉΡ€ΠΎΠ½Π°. Π’ качСствС ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π° для Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ обосновываСтся Π²Ρ‹Π±ΠΎΡ€ сСгмСнтной спайковой ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ΅ описаниС Ρ‚Π°ΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ Π΅Ρ‘ основныС особСнности, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΅Ρ‘ структурноС Ρ€Π΅ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅. ΠžΠΏΠΈΡΡ‹Π²Π°Π΅Ρ‚ΡΡ способ структурной Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠΎ Π²Ρ…ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Ρƒ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ². ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ общая схСма ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ сСгмСнтных спайковых Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Π² ΡΠ΅Ρ‚ΡŒ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ классификации. Π’ качСствС кодирования числовой ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π² ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Ρ‹ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² выбираСтся Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ ΠΊΡ€Π°Ρ‚ΠΊΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ экспСримСнтов ΠΏΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π·Π°Π΄Π°Ρ‡ΠΈ классификации Π½Π° общСдоступных Π½Π°Π±ΠΎΡ€Π°Ρ… Π΄Π°Π½Π½Ρ‹Ρ… (Iris, MNIST). ДСлаСтся Π²Ρ‹Π²ΠΎΠ΄ ΠΎ сопоставимости ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ классичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, приводится ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ΅ пошаговоС описаниС экспСримСнтов ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ состояния тСлСуправляСмого Π½Π΅ΠΎΠ±ΠΈΡ‚Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ расстояния Ρ‚Π°ΠΊΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° Π΄ΠΎ Π΄Π½Π° ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° Π΅Π³ΠΎ двиТСния. Показано соотвСтствиС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌΡƒ ΡΠΎΡΡ‚ΠΎΡΠ½ΠΈΡŽ тСлСуправляСмого Π½Π΅ΠΎΠ±ΠΈΡ‚Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°. Π‘Π΄Π΅Π»Π°Π½ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ пСрспСктивности примСнСния спайковых сСгмСнтных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π΅ΠΉΡ€ΠΎΠ½Π° с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ структурной Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ классификации. РассмотрСны дальнСйшиС пСрспСктивныС продолТСния исслСдований основанных Π½Π° сСгмСнтных спайковых модСлях Π½Π΅ΠΉΡ€ΠΎΠ½Π°

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ сСгмСнтной спайковой ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π° со структурной Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠ΅ΠΉ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ классификации

    Get PDF
    The problem of classification using a compartmental spiking neuron model is considered. The state of the art of spiking neural networks analysis is carried out. It is concluded that there are very few works on the study of compartmental neuron models. The choice of a compartmental spiking model is justified as a neuron model for this work. A brief description of such a model is given, and its main features are noted in terms of the possibility of its structural reconfiguration. The method of structural adaptation of the model to the input spike pattern is described. The general scheme of the compartmental spiking neurons’ organization into a network for solving the classification problem is given. The time-to-first-spike method is chosen for encoding numerical information into spike patterns, and a formula is given for calculating the delays of individual signals in the spike pattern when encoding information. Brief results of experiments on solving the classification problem on publicly available data sets (Iris, MNIST) are presented. The conclusion is made about the comparability of the obtained results with the existing classical methods. In addition, a detailed step-by-step description of experiments to determine the state of an autonomous uninhabited underwater vehicle is provided. Estimates of computational costs for solving the classification problem using a compartmental spiking neuron model are given. The conclusion is made about the prospects of using spiking compartmental models of a neuron to increase the bio-plausibility of the implementation of behavioral functions in neuromorphic control systems. Further promising directions for the development of neuromorphic systems based on the compartmental spiking neuron model are considered.Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ примСнСния сСгмСнтной спайковой ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π° с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ структурной Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ классификации. ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ Π°Π½Π°Π»ΠΈΠ· соврСмСнного состояния спайковых Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй. ДСлаСтся Π²Ρ‹Π²ΠΎΠ΄ ΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ Π½ΠΈΠ·ΠΊΠΎΠΌ количСствС Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ исслСдованию сСгмСнтных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π΅ΠΉΡ€ΠΎΠ½Π°. Π’ качСствС ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π° для Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ обосновываСтся Π²Ρ‹Π±ΠΎΡ€ сСгмСнтной спайковой ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ΅ описаниС Ρ‚Π°ΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ Π΅Ρ‘ основныС особСнности, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΅Ρ‘ структурноС Ρ€Π΅ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅. ΠžΠΏΠΈΡΡ‹Π²Π°Π΅Ρ‚ΡΡ способ структурной Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠΎ Π²Ρ…ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Ρƒ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ². ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ общая схСма ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ сСгмСнтных спайковых Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Π² ΡΠ΅Ρ‚ΡŒ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ классификации. Π’ качСствС кодирования числовой ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π² ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Ρ‹ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² выбираСтся Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ ΠΊΡ€Π°Ρ‚ΠΊΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ экспСримСнтов ΠΏΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π·Π°Π΄Π°Ρ‡ΠΈ классификации Π½Π° общСдоступных Π½Π°Π±ΠΎΡ€Π°Ρ… Π΄Π°Π½Π½Ρ‹Ρ… (Iris, MNIST). ДСлаСтся Π²Ρ‹Π²ΠΎΠ΄ ΠΎ сопоставимости ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ классичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, приводится ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ΅ пошаговоС описаниС экспСримСнтов ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ состояния тСлСуправляСмого Π½Π΅ΠΎΠ±ΠΈΡ‚Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ расстояния Ρ‚Π°ΠΊΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° Π΄ΠΎ Π΄Π½Π° ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° Π΅Π³ΠΎ двиТСния. Показано соотвСтствиС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌΡƒ ΡΠΎΡΡ‚ΠΎΡΠ½ΠΈΡŽ тСлСуправляСмого Π½Π΅ΠΎΠ±ΠΈΡ‚Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°. Π‘Π΄Π΅Π»Π°Π½ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ пСрспСктивности примСнСния спайковых сСгмСнтных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π΅ΠΉΡ€ΠΎΠ½Π° с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ структурной Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ классификации. РассмотрСны дальнСйшиС пСрспСктивныС продолТСния исслСдований основанных Π½Π° сСгмСнтных спайковых модСлях Π½Π΅ΠΉΡ€ΠΎΠ½Π°
    • …
    corecore