105 research outputs found

    Material Recognition in the Wild with the Materials in Context Database

    Full text link
    Recognizing materials in real-world images is a challenging task. Real-world materials have rich surface texture, geometry, lighting conditions, and clutter, which combine to make the problem particularly difficult. In this paper, we introduce a new, large-scale, open dataset of materials in the wild, the Materials in Context Database (MINC), and combine this dataset with deep learning to achieve material recognition and segmentation of images in the wild. MINC is an order of magnitude larger than previous material databases, while being more diverse and well-sampled across its 23 categories. Using MINC, we train convolutional neural networks (CNNs) for two tasks: classifying materials from patches, and simultaneous material recognition and segmentation in full images. For patch-based classification on MINC we found that the best performing CNN architectures can achieve 85.2% mean class accuracy. We convert these trained CNN classifiers into an efficient fully convolutional framework combined with a fully connected conditional random field (CRF) to predict the material at every pixel in an image, achieving 73.1% mean class accuracy. Our experiments demonstrate that having a large, well-sampled dataset such as MINC is crucial for real-world material recognition and segmentation.Comment: CVPR 2015. Sean Bell and Paul Upchurch contributed equall

    Efficient Yet Deep Convolutional Neural Networks for Semantic Segmentation

    Full text link
    Semantic Segmentation using deep convolutional neural network pose more complex challenge for any GPU intensive task. As it has to compute million of parameters, it results to huge memory consumption. Moreover, extracting finer features and conducting supervised training tends to increase the complexity. With the introduction of Fully Convolutional Neural Network, which uses finer strides and utilizes deconvolutional layers for upsampling, it has been a go to for any image segmentation task. In this paper, we propose two segmentation architecture which not only needs one-third the parameters to compute but also gives better accuracy than the similar architectures. The model weights were transferred from the popular neural net like VGG19 and VGG16 which were trained on Imagenet classification data-set. Then we transform all the fully connected layers to convolutional layers and use dilated convolution for decreasing the parameters. Lastly, we add finer strides and attach four skip architectures which are element-wise summed with the deconvolutional layers in steps. We train and test on different sparse and fine data-sets like Pascal VOC2012, Pascal-Context and NYUDv2 and show how better our model performs in this tasks. On the other hand our model has a faster inference time and consumes less memory for training and testing on NVIDIA Pascal GPUs, making it more efficient and less memory consuming architecture for pixel-wise segmentation.Comment: 8 page

    Material Recognition CNNs and Hierarchical Planning for Biped Robot Locomotion on Slippery Terrain

    Full text link
    In this paper we tackle the problem of visually predicting surface friction for environments with diverse surfaces, and integrating this knowledge into biped robot locomotion planning. The problem is essential for autonomous robot locomotion since diverse surfaces with varying friction abound in the real world, from wood to ceramic tiles, grass or ice, which may cause difficulties or huge energy costs for robot locomotion if not considered. We propose to estimate friction and its uncertainty from visual estimation of material classes using convolutional neural networks, together with probability distribution functions of friction associated with each material. We then robustly integrate the friction predictions into a hierarchical (footstep and full-body) planning method using chance constraints, and optimize the same trajectory costs at both levels of the planning method for consistency. Our solution achieves fully autonomous perception and locomotion on slippery terrain, which considers not only friction and its uncertainty, but also collision, stability and trajectory cost. We show promising friction prediction results in real pictures of outdoor scenarios, and planning experiments on a real robot facing surfaces with different friction
    • …
    corecore