5,332 research outputs found

    Sparse Coding on Symmetric Positive Definite Manifolds using Bregman Divergences

    Full text link
    This paper introduces sparse coding and dictionary learning for Symmetric Positive Definite (SPD) matrices, which are often used in machine learning, computer vision and related areas. Unlike traditional sparse coding schemes that work in vector spaces, in this paper we discuss how SPD matrices can be described by sparse combination of dictionary atoms, where the atoms are also SPD matrices. We propose to seek sparse coding by embedding the space of SPD matrices into Hilbert spaces through two types of Bregman matrix divergences. This not only leads to an efficient way of performing sparse coding, but also an online and iterative scheme for dictionary learning. We apply the proposed methods to several computer vision tasks where images are represented by region covariance matrices. Our proposed algorithms outperform state-of-the-art methods on a wide range of classification tasks, including face recognition, action recognition, material classification and texture categorization

    Reflection positivity and invertible topological phases

    Full text link
    We implement an extended version of reflection positivity (Wick-rotated unitarity) for invertible topological quantum field theories and compute the abelian group of deformation classes using stable homotopy theory. We apply these field theory considerations to lattice systems, assuming the existence and validity of low energy effective field theory approximations, and thereby produce a general formula for the group of Symmetry Protected Topological (SPT) phases in terms of Thom's bordism spectra; the only input is the dimension and symmetry group. We provide computations for fermionic systems in physically relevant dimensions. Other topics include symmetry in quantum field theories, a relativistic 10-fold way, the homotopy theory of relativistic free fermions, and a topological spin-statistics theorem.Comment: 136 pages, 16 figures; minor changes/corrections in version 2; v3 major revision; v4 minor revision: corrected proof of Lemma 9.55, many small changes throughout; v5 version for publication in Geometry & Topolog

    A new construction of homogeneous quaternionic manifolds and related geometric structures

    Full text link
    Let V be the pseudo-Euclidean vector space of signature (p,q), p>2 and W a module over the even Clifford algebra Cl^0 (V). A homogeneous quaternionic manifold (M,Q) is constructed for any spin(V)-equivariant linear map \Pi : \wedge^2 W \to V. If the skew symmetric vector valued bilinear form \Pi is nondegenerate then (M,Q) is endowed with a canonical pseudo-Riemannian metric g such that (M,Q,g) is a homogeneous quaternionic pseudo-K\"ahler manifold. The construction is shown to have a natural mirror in the category of supermanifolds. In fact, for any spin(V)-equivariant linear map \Pi : Sym^2 W \to V a homogeneous quaternionic supermanifold (M,Q) is constructed and, moreover, a homogeneous quaternionic pseudo-K\"ahler supermanifold (M,Q,g) if the symmetric vector valued bilinear form \Pi is nondegenerate.Comment: to appear in the Memoirs of the AMS, 81 pages, Latex source fil

    A tour on Hermitian symmetric manifolds

    Full text link
    Hermitian symmetric manifolds are Hermitian manifolds which are homogeneous and such that every point has a symmetry preserving the Hermitian structure. The aim of these notes is to present an introduction to this important class of manifolds, trying to survey the several different perspectives from which Hermitian symmetric manifolds can be studied.Comment: 56 pages, expanded version. Written for the Proceedings of the CIME-CIRM summer course "Combinatorial Algebraic Geometry". Comments are still welcome
    • …
    corecore