378 research outputs found

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    A semi-exact degree condition for Hamilton cycles in digraphs

    Full text link
    The paper is concerned with directed versions of Posa's theorem and Chvatal's theorem on Hamilton cycles in graphs. We show that for each a>0, every digraph G of sufficiently large order n whose outdegree and indegree sequences d_1^+ \leq ... \leq d_n^+ and d_1^- \leq >... \leq d_n^- satisfy d_i^+, d_i^- \geq min{i + a n, n/2} is Hamiltonian. In fact, we can weaken these assumptions to (i) d_i^+ \geq min{i + a n, n/2} or d^-_{n - i - a n} \geq n-i; (ii) d_i^- \geq min{i + a n, n/2} or d^+_{n - i - a n} \geq n-i; and still deduce that G is Hamiltonian. This provides an approximate version of a conjecture of Nash-Williams from 1975 and improves a previous result of K\"uhn, Osthus and Treglown

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Packing tight Hamilton cycles in 3-uniform hypergraphs

    Full text link
    Let H be a 3-uniform hypergraph with N vertices. A tight Hamilton cycle C \subset H is a collection of N edges for which there is an ordering of the vertices v_1, ..., v_N such that every triple of consecutive vertices {v_i, v_{i+1}, v_{i+2}} is an edge of C (indices are considered modulo N). We develop new techniques which enable us to prove that under certain natural pseudo-random conditions, almost all edges of H can be covered by edge-disjoint tight Hamilton cycles, for N divisible by 4. Consequently, we derive the corollary that random 3-uniform hypergraphs can be almost completely packed with tight Hamilton cycles w.h.p., for N divisible by 4 and P not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo-random digraphs with even numbers of vertices.Comment: 31 pages, 1 figur

    Optimal path and cycle decompositions of dense quasirandom graphs

    Get PDF
    Motivated by longstanding conjectures regarding decompositions of graphs into paths and cycles, we prove the following optimal decomposition results for random graphs. Let 0<p<10<p<1 be constant and let GGn,pG\sim G_{n,p}. Let odd(G)odd(G) be the number of odd degree vertices in GG. Then a.a.s. the following hold: (i) GG can be decomposed into Δ(G)/2\lfloor\Delta(G)/2\rfloor cycles and a matching of size odd(G)/2odd(G)/2. (ii) GG can be decomposed into max{odd(G)/2,Δ(G)/2}\max\{odd(G)/2,\lceil\Delta(G)/2\rceil\} paths. (iii) GG can be decomposed into Δ(G)/2\lceil\Delta(G)/2\rceil linear forests. Each of these bounds is best possible. We actually derive (i)--(iii) from `quasirandom' versions of our results. In that context, we also determine the edge chromatic number of a given dense quasirandom graph of even order. For all these results, our main tool is a result on Hamilton decompositions of robust expanders by K\"uhn and Osthus.Comment: Some typos from the first version have been correcte

    Packing, counting and covering Hamilton cycles in random directed graphs

    Get PDF
    A Hamilton cycle in a digraph is a cycle that passes through all the vertices, where all the arcs are oriented in the same direction. The problem of finding Hamilton cycles in directed graphs is well studied and is known to be hard. One of the main reasons for this is that there is no general tool for finding Hamilton cycles in directed graphs comparable to the so-called Posá ‘rotation-extension’ technique for the undirected analogue. Let D(n, p) denote the random digraph on vertex set [n], obtained by adding each directed edge independently with probability p. Here we present a general and a very simple method, using known results, to attack problems of packing and counting Hamilton cycles in random directed graphs, for every edge-probability p &gt; logC(n)/n. Our results are asymptotically optimal with respect to all parameters and apply equally well to the undirected case

    Proof of the 1-factorization and Hamilton decomposition conjectures III: approximate decompositions

    Full text link
    In a sequence of four papers, we prove the following results (via a unified approach) for all sufficiently large nn: (i) [1-factorization conjecture] Suppose that nn is even and D2n/41D\geq 2\lceil n/4\rceil -1. Then every DD-regular graph GG on nn vertices has a decomposition into perfect matchings. Equivalently, χ(G)=D\chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that Dn/2D \ge \lfloor n/2 \rfloor . Then every DD-regular graph GG on nn vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) We prove an optimal result on the number of edge-disjoint Hamilton cycles in a graph of given minimum degree. According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answer questions of Nash-Williams from 1970. The above bounds are best possible. In the current paper, we show the following: suppose that GG is close to a complete balanced bipartite graph or to the union of two cliques of equal size. If we are given a suitable set of path systems which cover a set of `exceptional' vertices and edges of GG, then we can extend these path systems into an approximate decomposition of GG into Hamilton cycles (or perfect matchings if appropriate).Comment: We originally split the proof into four papers, of which this was the third paper. We have now combined this series into a single publication [arXiv:1401.4159v2], which will appear in the Memoirs of the AMS. 29 pages, 2 figure
    corecore