5,493 research outputs found

    Independence densities of hypergraphs

    Get PDF
    We consider the number of independent sets in hypergraphs, which allows us to define the independence density of countable hypergraphs. Hypergraph independence densities include a broad family of densities over graphs and relational structures, such as FF-free densities of graphs for a given graph F.F. In the case of kk-uniform hypergraphs, we prove that the independence density is always rational. In the case of finite but unbounded hyperedges, we show that the independence density can be any real number in [0,1].[0,1]. Finally, we extend the notion of independence density via independence polynomials

    Approximating the Largest Root and Applications to Interlacing Families

    Full text link
    We study the problem of approximating the largest root of a real-rooted polynomial of degree nn using its top kk coefficients and give nearly matching upper and lower bounds. We present algorithms with running time polynomial in kk that use the top kk coefficients to approximate the maximum root within a factor of n1/kn^{1/k} and 1+O(lognk)21+O(\tfrac{\log n}{k})^2 when klognk\leq \log n and k>lognk>\log n respectively. We also prove corresponding information-theoretic lower bounds of nΩ(1/k)n^{\Omega(1/k)} and 1+Ω(log2nkk)21+\Omega\left(\frac{\log \frac{2n}{k}}{k}\right)^2, and show strong lower bounds for noisy version of the problem in which one is given access to approximate coefficients. This problem has applications in the context of the method of interlacing families of polynomials, which was used for proving the existence of Ramanujan graphs of all degrees, the solution of the Kadison-Singer problem, and bounding the integrality gap of the asymmetric traveling salesman problem. All of these involve computing the maximum root of certain real-rooted polynomials for which the top few coefficients are accessible in subexponential time. Our results yield an algorithm with the running time of 2O~(n3)2^{\tilde O(\sqrt[3]n)} for all of them

    Graph presentations for moments of noncentral Wishart distributions and their applications

    Full text link
    We provide formulas for the moments of the real and complex noncentral Wishart distributions of general degrees. The obtained formulas for the real and complex cases are described in terms of the undirected and directed graphs, respectively. By considering degenerate cases, we give explicit formulas for the moments of bivariate chi-square distributions and 2×22\times 2 Wishart distributions by enumerating the graphs. Noting that the Laguerre polynomials can be considered to be moments of a noncentral chi-square distributions formally, we demonstrate a combinatorial interpretation of the coefficients of the Laguerre polynomials

    Higher order matching polynomials and d-orthogonality

    Get PDF
    We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials -- the Chebyshev, Hermite, and Laguerre polynomials -- can be interpreted as matching polynomials of paths, cycles, complete graphs, and complete bipartite graphs. The notion of d-orthogonality is a generalization of the usual idea of orthogonality for polynomials and we use sign-reversing involutions to show that the higher-order Chebyshev (first and second kinds), Hermite, and Laguerre polynomials are d-orthogonal. We also investigate the moments and find generating functions of those polynomials.Comment: 21 pages, many TikZ figures; v2: minor clarifications and addition
    corecore