5,209 research outputs found

    Pattern Matching for sets of segments

    Full text link
    In this paper we present algorithms for a number of problems in geometric pattern matching where the input consist of a collections of segments in the plane. Our work consists of two main parts. In the first, we address problems and measures that relate to collections of orthogonal line segments in the plane. Such collections arise naturally from problems in mapping buildings and robot exploration. We propose a new measure of segment similarity called a \emph{coverage measure}, and present efficient algorithms for maximising this measure between sets of axis-parallel segments under translations. Our algorithms run in time O(n^3\polylog n) in the general case, and run in time O(n^2\polylog n) for the case when all segments are horizontal. In addition, we show that when restricted to translations that are only vertical, the Hausdorff distance between two sets of horizontal segments can be computed in time roughly O(n^{3/2}{\sl polylog}n). These algorithms form significant improvements over the general algorithm of Chew et al. that takes time O(n4log⁑2n)O(n^4 \log^2 n). In the second part of this paper we address the problem of matching polygonal chains. We study the well known \Frd, and present the first algorithm for computing the \Frd under general translations. Our methods also yield algorithms for computing a generalization of the \Fr distance, and we also present a simple approximation algorithm for the \Frd that runs in time O(n^2\polylog n).Comment: To appear in the 12 ACM Symposium on Discrete Algorithms, Jan 200

    Characterization of co-blockers for simple perfect matchings in a convex geometric graph

    Full text link
    Consider the complete convex geometric graph on 2m2m vertices, CGG(2m)CGG(2m), i.e., the set of all boundary edges and diagonals of a planar convex 2m2m-gon PP. In [C. Keller and M. Perles, On the Smallest Sets Blocking Simple Perfect Matchings in a Convex Geometric Graph], the smallest sets of edges that meet all the simple perfect matchings (SPMs) in CGG(2m)CGG(2m) (called "blockers") are characterized, and it is shown that all these sets are caterpillar graphs with a special structure, and that their total number is mβ‹…2mβˆ’1m \cdot 2^{m-1}. In this paper we characterize the co-blockers for SPMs in CGG(2m)CGG(2m), that is, the smallest sets of edges that meet all the blockers. We show that the co-blockers are exactly those perfect matchings MM in CGG(2m)CGG(2m) where all edges are of odd order, and two edges of MM that emanate from two adjacent vertices of PP never cross. In particular, while the number of SPMs and the number of blockers grow exponentially with mm, the number of co-blockers grows super-exponentially.Comment: 8 pages, 4 figure

    Fast Frechet Distance Between Curves With Long Edges

    Full text link
    Computing the Fr\'echet distance between two polygonal curves takes roughly quadratic time. In this paper, we show that for a special class of curves the Fr\'echet distance computations become easier. Let PP and QQ be two polygonal curves in Rd\mathbb{R}^d with nn and mm vertices, respectively. We prove four results for the case when all edges of both curves are long compared to the Fr\'echet distance between them: (1) a linear-time algorithm for deciding the Fr\'echet distance between two curves, (2) an algorithm that computes the Fr\'echet distance in O((n+m)log⁑(n+m))O((n+m)\log (n+m)) time, (3) a linear-time d\sqrt{d}-approximation algorithm, and (4) a data structure that supports O(mlog⁑2n)O(m\log^2 n)-time decision queries, where mm is the number of vertices of the query curve and nn the number of vertices of the preprocessed curve

    Locally Correct Frechet Matchings

    Full text link
    The Frechet distance is a metric to compare two curves, which is based on monotonous matchings between these curves. We call a matching that results in the Frechet distance a Frechet matching. There are often many different Frechet matchings and not all of these capture the similarity between the curves well. We propose to restrict the set of Frechet matchings to "natural" matchings and to this end introduce locally correct Frechet matchings. We prove that at least one such matching exists for two polygonal curves and give an O(N^3 log N) algorithm to compute it, where N is the total number of edges in both curves. We also present an O(N^2) algorithm to compute a locally correct discrete Frechet matching
    • …
    corecore