31,071 research outputs found

    Massively-Parallel Feature Selection for Big Data

    Full text link
    We present the Parallel, Forward-Backward with Pruning (PFBP) algorithm for feature selection (FS) in Big Data settings (high dimensionality and/or sample size). To tackle the challenges of Big Data FS PFBP partitions the data matrix both in terms of rows (samples, training examples) as well as columns (features). By employing the concepts of pp-values of conditional independence tests and meta-analysis techniques PFBP manages to rely only on computations local to a partition while minimizing communication costs. Then, it employs powerful and safe (asymptotically sound) heuristics to make early, approximate decisions, such as Early Dropping of features from consideration in subsequent iterations, Early Stopping of consideration of features within the same iteration, or Early Return of the winner in each iteration. PFBP provides asymptotic guarantees of optimality for data distributions faithfully representable by a causal network (Bayesian network or maximal ancestral graph). Our empirical analysis confirms a super-linear speedup of the algorithm with increasing sample size, linear scalability with respect to the number of features and processing cores, while dominating other competitive algorithms in its class

    Feature selection in high-dimensional dataset using MapReduce

    Full text link
    This paper describes a distributed MapReduce implementation of the minimum Redundancy Maximum Relevance algorithm, a popular feature selection method in bioinformatics and network inference problems. The proposed approach handles both tall/narrow and wide/short datasets. We further provide an open source implementation based on Hadoop/Spark, and illustrate its scalability on datasets involving millions of observations or features

    Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy

    Get PDF
    Astrophysics and cosmology are rich with data. The advent of wide-area digital cameras on large aperture telescopes has led to ever more ambitious surveys of the sky. Data volumes of entire surveys a decade ago can now be acquired in a single night and real-time analysis is often desired. Thus, modern astronomy requires big data know-how, in particular it demands highly efficient machine learning and image analysis algorithms. But scalability is not the only challenge: Astronomy applications touch several current machine learning research questions, such as learning from biased data and dealing with label and measurement noise. We argue that this makes astronomy a great domain for computer science research, as it pushes the boundaries of data analysis. In the following, we will present this exciting application area for data scientists. We will focus on exemplary results, discuss main challenges, and highlight some recent methodological advancements in machine learning and image analysis triggered by astronomical applications

    Mining Dynamic Document Spaces with Massively Parallel Embedded Processors

    Get PDF
    Currently Océ investigates future document management services. One of these services is accessing dynamic document spaces, i.e. improving the access to document spaces which are frequently updated (like newsgroups). This process is rather computational intensive. This paper describes the research conducted on software development for massively parallel processors. A prototype has been built which processes streams of information from specified newsgroups and transforms them into personal information maps. Although this technology does speed up the training part compared to a general purpose processor implementation, however, its real benefits emerges with larger problem dimensions because of the scalable approach. It is recommended to improve on quality of the map as well as on visualisation and to better profile the performance of the other parts of the pipeline, i.e. feature extraction and visualisation

    Parallel simulation of Population Dynamics P systems: updates and roadmap

    Get PDF
    Population Dynamics P systems are a type of multienvironment P systems that serve as a formal modeling framework for real ecosystems. The accurate simulation of these probabilisticmodels, e.g. with Direct distribution based on Consistent Blocks Algorithm, entails large run times. Hence, parallel platforms such as GPUs have been employed to speedup the simulation. In 2012, the first GPU simulator of PDP systems was presented. However, it was able to run only randomly generated PDP systems. In this paper, we present current updates made on this simulator, involving an input modu le for binary files and an output module for CSV files. Finally, the simulator has been experimentally validated with a real ecosystem model, and its performance has been tested with two high-end GPUs: Tesla C1060 and K40.Ministerio de Economía y Competitividad TIN2012-37434Junta de Andalucía P08-TIC-0420

    Challenges of Big Data Analysis

    Full text link
    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article give overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasis on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions
    corecore