13 research outputs found

    Mitigating Smart Jammers in Multi-User MIMO

    Full text link
    Wireless systems must be resilient to jamming attacks. Existing mitigation methods based on multi-antenna processing require knowledge of the jammer's transmit characteristics that may be difficult to acquire, especially for smart jammers that evade mitigation by transmitting only at specific instants. We propose a novel method to mitigate smart jamming attacks on the massive multi-user multiple-input multiple-output (MU-MIMO) uplink which does not require the jammer to be active at any specific instant. By formulating an optimization problem that unifies jammer estimation and mitigation, channel estimation, and data detection, we exploit that a jammer cannot change its subspace within a coherence interval. Theoretical results for our problem formulation show that its solution is guaranteed to recover the users' data symbols under certain conditions. We develop two efficient iterative algorithms for approximately solving the proposed problem formulation: MAED, a parameter-free algorithm which uses forward-backward splitting with a box symbol prior, and SO-MAED, which replaces the prior of MAED with soft-output symbol estimates that exploit the discrete transmit constellation and which uses deep unfolding to optimize algorithm parameters. We use simulations to demonstrate that the proposed algorithms effectively mitigate a wide range of smart jammers without a priori knowledge about the attack type.Comment: arXiv admin note: text overlap with arXiv:2201.0877

    EM-Based Estimation and Compensation of Phase Noise in Massive-MIMO Uplink Communications

    Full text link
    Phase noise (PN) is a major disturbance in MIMO systems, where the contribution of different oscillators at the transmitter and the receiver side may degrade the overall performance and offset the gains offered by MIMO techniques. This is even more crucial in the case of massive MIMO, since the number of PN sources may increase considerably. In this work, we propose an iterative receiver based on the application of the expectation-maximization algorithm. We consider a massive MIMO framework with a general association of oscillators to antennas, and include other channel disturbances like imperfect channel state information and Rician block fading. At each receiver iteration, given the information on the transmitted symbols, steepest descent is used to estimate the PN samples, with an optimized adaptive step size and a threshold-based stopping rule. The results obtained for several test cases show how the bit error rate and mean square error can benefit from the proposed phase-detection algorithm, even to the point of reaching the same performance as in the case where no PN is present{\color{black}, offering better results than a state-of-the-art alternative}. Further analysis of the results allow to draw some useful trade-offs respecting final performance and consumption of resources.Comment: Submitted to IEEE Transactions on Communication

    Analog-Domain Suppression of Strong Interference Using Hybrid Antenna Array.

    Full text link
    The proliferation of wireless applications, the ever-increasing spectrum crowdedness, as well as cell densification makes the issue of interference increasingly severe in many emerging wireless applications. Most interference management/mitigation methods in the literature are problem-specific and require some cooperation/coordination between different radio frequency systems. Aiming to seek a more versatile solution to counteracting strong interference, we resort to the hybrid array of analog subarrays and suppress interference in the analog domain so as to greatly reduce the required quantization bits of the analog-to-digital converters and their power consumption. To this end, we design a real-time algorithm to steer nulls towards the interference directions and maintain flat in non-interference directions, solely using constant-modulus phase shifters. To ensure sufficient null depth for interference suppression, we also develop a two-stage method for accurately estimating interference directions. The proposed solution can be applicable to most (if not all) wireless systems as neither training/reference signal nor cooperation/coordination is required. Extensive simulations show that more than 65 dB of suppression can be achieved for 3 spatially resolvable interference signals yet with random directions

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore