73,023 research outputs found

    Riesz external field problems on the hypersphere and optimal point separation

    Full text link
    We consider the minimal energy problem on the unit sphere Sd\mathbb{S}^d in the Euclidean space Rd+1\mathbb{R}^{d+1} in the presence of an external field QQ, where the energy arises from the Riesz potential 1/rs1/r^s (where rr is the Euclidean distance and ss is the Riesz parameter) or the logarithmic potential log(1/r)\log(1/r). Characterization theorems of Frostman-type for the associated extremal measure, previously obtained by the last two authors, are extended to the range d2s<d1.d-2 \leq s < d - 1. The proof uses a maximum principle for measures supported on Sd\mathbb{S}^d. When QQ is the Riesz ss-potential of a signed measure and d2s<dd-2 \leq s <d, our results lead to explicit point-separation estimates for (Q,s)(Q,s)-Fekete points, which are nn-point configurations minimizing the Riesz ss-energy on Sd\mathbb{S}^d with external field QQ. In the hyper-singular case s>ds > d, the short-range pair-interaction enforces well-separation even in the presence of more general external fields. As a further application, we determine the extremal and signed equilibria when the external field is due to a negative point charge outside a positively charged isolated sphere. Moreover, we provide a rigorous analysis of the three point external field problem and numerical results for the four point problem.Comment: 35 pages, 4 figure

    On the singularity type of full mass currents in big cohomology classes

    Full text link
    Let XX be a compact K\"ahler manifold and {θ}\{\theta\} be a big cohomology class. We prove several results about the singularity type of full mass currents, answering a number of open questions in the field. First, we show that the Lelong numbers and multiplier ideal sheaves of θ\theta-plurisubharmonic functions with full mass are the same as those of the current with minimal singularities. Second, given another big and nef class {η}\{\eta\}, we show the inclusion E(X,η)PSH(X,θ)E(X,θ).\mathcal{E}(X,\eta) \cap {PSH}(X,\theta) \subset \mathcal{E}(X,\theta). Third, we characterize big classes whose full mass currents are "additive". Our techniques make use of a characterization of full mass currents in terms of the envelope of their singularity type. As an essential ingredient we also develop the theory of weak geodesics in big cohomology classes. Numerous applications of our results to complex geometry are also given.Comment: v2. Theorem 1.1 updated to include statement about multiplier ideal sheaves. Several typos fixed. v3. we make our arguments independent of the regularity results of Berman-Demaill

    Stabilizing the Dilaton in Superstring Cosmology

    Get PDF
    We address the important issue of stabilizing the dilaton in the context of superstring cosmology. Scalar potentials which arise out of gaugino condensates in string models are generally exponential in nature. In a cosmological setting this allows for the existence of quasi scaling solutions, in which the energy density of the scalar field can, for a period, become a fixed fraction of the background density, due to the friction of the background expansion. Eventually the field can be trapped in the minimum of its potential as it leaves the scaling regime. We investigate this possibility in various gaugino condensation models and show that stable solutions for the dilaton are far more common than one would have naively thought.Comment: 13 pages, LaTex, uses psfig.sty with 3 figure

    Cosmology

    Full text link
    In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.Comment: 47 pages, set of lectures given at the 2011 European School of High-Energy Physics, Cheile Gradistei, Romania, 7-20 Sep 2011, edited by C. Grojean, M. Mulder
    corecore