1,434,542 research outputs found
Entropy Generation in MHD Flow of a Uniformly Stretched Vertical Permeable Surface under Oscillatory Suction Velocity
This paper reports the analytical calculation of the entropy generation due to heat and mass transfer and fluid friction in steady state of a uniformly stretched vertical permeable surface with heat and mass diffusive walls, by solving analytically the mass, momentum, species concentration and energy balance equation, using asymptotic method. The velocity, temperature and concentration profiles were reported and discussed. The influences of the chemical reaction parameter, the thermal and mass Grashof numbers, heat generation/absorption and Hartmann number on total entropy generation were investigated, reported and discussed
Survey and Experimental Testing of Nongravimetric Mass Measurement Devices
Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested
Detailed 3D modelling of mass transfer processes in two phase flows with dynamic interfaces
We developed a method that will enable us to determine mass transfer coefficients for a\ud
large number of two phase flow conditions based on numerical simulation. A three-dimensional\ud
direct numerical simulation based on the Front Tracking technique taking into account the mass\ud
transfer process was chosen for this purpose. The dissolved species concentration in the liquid\ud
phase is tracked using a scalar mass balance while the value of the concentration at the interface\ud
is determined via an immersed boundary technique. In the present study, simulations are carried\ud
out to investigate the effect of the bubble shape on the dissolved species concentration fiel
Simulation of coalescence, break up and mass transfer in bubble columns by using the Conditional Quadrature Method of Moments in OpenFOAM
The evaluation of the mass transfer rates and the fluid-dynamics aspects of bubble columns are strongly affected by the intrinsic poly-dispersity of the gas phase, namely the different dispersed bubbles are usually distributed over a certain range of size and chemical composition values. In our previous work, gas-liquid systems were investigated by coupling Computational Fluid Dynamics with mono-variate population balance models (PBM) solved by using the quadrature method of moments (QMOM). Since mass transfer rates depend not only on bubble size, but also on bubble composition, the problem was subsequently extended to the solution of multi-variate PBM (Buffo et al. 2013). In this work, the conditional quadrature method of moments (CQMOM) is implemented in the open-source code OpenFOAM for describing bubble coalescence, breakage and mass transfer of a realistic partially aerated rectangular bubble column, experimentally investigated by Diaz et al.(2008). Eventually, the obtained results are here compared with the experimental data availabl
A simplified implementation of the stationary liquid mass balance method for on-line OUR monitoring in animal cell cultures
This is the peer reviewed version of the following article: [Fontova, A. , Lecina, M. , López‐Repullo, J. , Martínez‐Monge, I. , Comas, P. , Bragós, R. and Cairó, J. J. (2018), A simplified implementation of the stationary liquid mass balance method for on‐line OUR monitoring in animal cell cultures. J. Chem. Technol. Biotechnol. doi:10.1002/jctb.5551], which has been published in final form at [doi:10.1002/jctb.5551]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.BACKGROUND: Compared with other methods, the stationary liquid mass balance method for oxygen uptake rate (OUR) determination offers advantages in terms of estimation accuracy and reduction of stress. However, the need for sophisticated instrumentation, like mass flow controllers and gas analysers, has historically limited wider implementation of such a method. In this paper, a new simplified method based on inexpensive valves for the continuous estimation of OUR in animal cell cultures is evaluated. The determination of OUR values is based on accurate operation of the dissolved oxygen (DO) control loop and monitoring of its internal variables. RESULTS: The method developed was tested empirically in 2¿L bioreactor HEK293 batch cultures. OUR profiles obtained by a dynamic method, global mass balance method and the developed simplified method were monitored and compared. The results show how OUR profile obtained with the proposed method better follows the off-line cell density determination. The OUR estimation frequency was also increased, improving the method capabilities and applications. The theoretical rationale of the method was extended to the sensitivity analysis which was analytically and numerically approached. CONCLUSIONS: The results showed the proposed method to be not only cheap, but also a reliable alternative to monitor the metabolic activity in bioreactors in many biotechnological processes, being a useful tool for high cell density culture strategies implementation based on OUR monitoring.Peer ReviewedPostprint (published version
- …
