4,931 research outputs found

    Masking noise in up-scaled video on large displays

    Full text link

    Masking noise in up-scaled video on large displays

    Full text link

    Mitigation of H.264 and H.265 Video Compression for Reliable PRNU Estimation

    Full text link
    The photo-response non-uniformity (PRNU) is a distinctive image sensor characteristic, and an imaging device inadvertently introduces its sensor's PRNU into all media it captures. Therefore, the PRNU can be regarded as a camera fingerprint and used for source attribution. The imaging pipeline in a camera, however, involves various processing steps that are detrimental to PRNU estimation. In the context of photographic images, these challenges are successfully addressed and the method for estimating a sensor's PRNU pattern is well established. However, various additional challenges related to generation of videos remain largely untackled. With this perspective, this work introduces methods to mitigate disruptive effects of widely deployed H.264 and H.265 video compression standards on PRNU estimation. Our approach involves an intervention in the decoding process to eliminate a filtering procedure applied at the decoder to reduce blockiness. It also utilizes decoding parameters to develop a weighting scheme and adjust the contribution of video frames at the macroblock level to PRNU estimation process. Results obtained on videos captured by 28 cameras show that our approach increases the PRNU matching metric up to more than five times over the conventional estimation method tailored for photos

    Contextual cropping and scaling of TV productions

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0804-3. Copyright @ Springer Science+Business Media, LLC 2011.In this paper, an application is presented which automatically adapts SDTV (Standard Definition Television) sports productions to smaller displays through intelligent cropping and scaling. It crops regions of interest of sports productions based on a smart combination of production metadata and systematic video analysis methods. This approach allows a context-based composition of cropped images. It provides a differentiation between the original SD version of the production and the processed one adapted to the requirements for mobile TV. The system has been comprehensively evaluated by comparing the outcome of the proposed method with manually and statically cropped versions, as well as with non-cropped versions. Envisaged is the integration of the tool in post-production and live workflows

    High dynamic range video compression exploiting luminance masking

    Get PDF

    Perceptual Visibility Model for Temporal Contrast Changes in Periphery

    Get PDF
    Modeling perception is critical for many applications and developments in computer graphics to optimize and evaluate content generation techniques. Most of the work to date has focused on central (foveal) vision. However, this is insufficient for novel wide-field-of-view display devices, such as virtual and augmented reality headsets. Furthermore, the perceptual models proposed for the fovea do not readily extend to the off-center, peripheral visual field, where human perception is drastically different. In this paper, we focus on modeling the temporal aspect of visual perception in the periphery. We present new psychophysical experiments that measure the sensitivity of human observers to different spatio-temporal stimuli across a wide field of view. We use the collected data to build a perceptual model for the visibility of temporal changes at different eccentricities in complex video content. Finally, we discuss, demonstrate, and evaluate several problems that can be addressed using our technique. First, we show how our model enables injecting new content into the periphery without distracting the viewer, and we discuss the link between the model and human attention. Second, we demonstrate how foveated rendering methods can be evaluated and optimized to limit the visibility of temporal aliasing

    Analysis of Hardware Accelerated Deep Learning and the Effects of Degradation on Performance

    Get PDF
    As convolutional neural networks become more prevalent in research and real world applications, the need for them to be faster and more robust will be a constant battle. This thesis investigates the effect of degradation being introduced to an image prior to object recognition with a convolutional neural network. As well as experimenting with methods to reduce the degradation and improve performance. Gaussian smoothing and additive Gaussian noise are both analyzed degradation models within this thesis and are reduced with Gaussian and Butterworth masks using unsharp masking and smoothing, respectively. The results show that each degradation is disruptive to the performance of YOLOv3, with Gaussian smoothing producing a mean average precision of less than 20% and Gaussian noise producing a mean average precision as low as 0%. Reduction methods applied to the data give results of 1%-21% mean average precision increase over the baseline, varying based on the degradation model. These methods are also applied to an 8-bit quantized implementation of YOLOv3, which is intended to run on a Xilinx ZCU104 FPGA, which showed to be as robust as the oating point network, with results within 2% mean average precision of the oating point network. With the ZCU104 being able to process images of 416x416 at 25 frames per second which is comparable to a NVIDIA 2080 RTX, FPGAs are a viable solution to computing object detection on the edge. In conclusion, this thesis shows that degradation causes performance of a convolutional neural network (quantized and oating point) to lose accuracy to a level that the network is unable to accurately predict objects. However, the degradation can be reduced, and in most cases can elevate the performance of the network by using computer vision techniques to reduce the noise within the image
    • …
    corecore