338 research outputs found

    What is a Higher Level Set?

    Get PDF
    Structuralist foundations of mathematics aim for an “invariant” conception of mathematics. But what should be their basic objects? Two leading answers emerge: higher groupoids or higher categories. In this paper I argue in favor of the former over the latter. First, I explain why to pick between them we need to ask the question of what is the correct “categorified” version of a set. Second, I argue in favor of groupoids over categories as “categorified” sets by introducing a pre-formal understanding of groupoids as abstract shapes. This conclusion lends further support to the perspective taken by the Univalent Foundations of mathematics

    Two-Level Type Theory and Applications

    Get PDF
    We define and develop two-level type theory (2LTT), a version of Martin-L\"of type theory which combines two different type theories. We refer to them as the inner and the outer type theory. In our case of interest, the inner theory is homotopy type theory (HoTT) which may include univalent universes and higher inductive types. The outer theory is a traditional form of type theory validating uniqueness of identity proofs (UIP). One point of view on it is as internalised meta-theory of the inner type theory. There are two motivations for 2LTT. Firstly, there are certain results about HoTT which are of meta-theoretic nature, such as the statement that semisimplicial types up to level nn can be constructed in HoTT for any externally fixed natural number nn. Such results cannot be expressed in HoTT itself, but they can be formalised and proved in 2LTT, where nn will be a variable in the outer theory. This point of view is inspired by observations about conservativity of presheaf models. Secondly, 2LTT is a framework which is suitable for formulating additional axioms that one might want to add to HoTT. This idea is heavily inspired by Voevodsky's Homotopy Type System (HTS), which constitutes one specific instance of a 2LTT. HTS has an axiom ensuring that the type of natural numbers behaves like the external natural numbers, which allows the construction of a universe of semisimplicial types. In 2LTT, this axiom can be stated simply be asking the inner and outer natural numbers to be isomorphic. After defining 2LTT, we set up a collection of tools with the goal of making 2LTT a convenient language for future developments. As a first such application, we develop the theory of Reedy fibrant diagrams in the style of Shulman. Continuing this line of thought, we suggest a definition of (infinity,1)-category and give some examples.Comment: 53 page

    Constructing Infinitary Quotient-Inductive Types

    Get PDF
    This paper introduces an expressive class of quotient-inductive types, called QW-types. We show that in dependent type theory with uniqueness of identity proofs, even the infinitary case of QW-types can be encoded using the combination of inductive-inductive definitions involving strictly positive occurrences of Hofmann-style quotient types, and Abel's size types. The latter, which provide a convenient constructive abstraction of what classically would be accomplished with transfinite ordinals, are used to prove termination of the recursive definitions of the elimination and computation properties of our encoding of QW-types. The development is formalized using the Agda theorem prover

    Constructing Infinitary Quotient-Inductive Types

    Full text link
    This paper introduces an expressive class of quotient-inductive types, called QW-types. We show that in dependent type theory with uniqueness of identity proofs, even the infinitary case of QW-types can be encoded using the combination of inductive-inductive definitions involving strictly positive occurrences of Hofmann-style quotient types, and Abel's size types. The latter, which provide a convenient constructive abstraction of what classically would be accomplished with transfinite ordinals, are used to prove termination of the recursive definitions of the elimination and computation properties of our encoding of QW-types. The development is formalized using the Agda theorem prover.Comment: The accompanying Agda code can be found at https://doi.org/10.17863/CAM.4818

    Probing protein interfaces in health and disease by single-molecule magnetic tweezers force spectroscopy

    Get PDF
    • …
    corecore