7 research outputs found

    HYPA: Efficient Detection of Path Anomalies in Time Series Data on Networks

    Full text link
    The unsupervised detection of anomalies in time series data has important applications in user behavioral modeling, fraud detection, and cybersecurity. Anomaly detection has, in fact, been extensively studied in categorical sequences. However, we often have access to time series data that represent paths through networks. Examples include transaction sequences in financial networks, click streams of users in networks of cross-referenced documents, or travel itineraries in transportation networks. To reliably detect anomalies, we must account for the fact that such data contain a large number of independent observations of paths constrained by a graph topology. Moreover, the heterogeneity of real systems rules out frequency-based anomaly detection techniques, which do not account for highly skewed edge and degree statistics. To address this problem, we introduce HYPA, a novel framework for the unsupervised detection of anomalies in large corpora of variable-length temporal paths in a graph. HYPA provides an efficient analytical method to detect paths with anomalous frequencies that result from nodes being traversed in unexpected chronological order.Comment: 11 pages with 8 figures and supplementary material. To appear at SIAM Data Mining (SDM 2020

    Discovering frequent episodes and learning hidden Markov models: a formal connection

    Full text link

    IMAGE UNDERSTANDING OF MOLAR PREGNANCY BASED ON ANOMALIES DETECTION

    Get PDF
    Cancer occurs when normal cells grow and multiply without normal control. As the cells multiply, they form an area of abnormal cells, known as a tumour. Many tumours exhibit abnormal chromosomal segregation at cell division. These anomalies play an important role in detecting molar pregnancy cancer. Molar pregnancy, also known as hydatidiform mole, can be categorised into partial (PHM) and complete (CHM) mole, persistent gestational trophoblastic and choriocarcinoma. Hydatidiform moles are most commonly found in women under the age of 17 or over the age of 35. Hydatidiform moles can be detected by morphological and histopathological examination. Even experienced pathologists cannot easily classify between complete and partial hydatidiform moles. However, the distinction between complete and partial hydatidiform moles is important in order to recommend the appropriate treatment method. Therefore, research into molar pregnancy image analysis and understanding is critical. The hypothesis of this research project is that an anomaly detection approach to analyse molar pregnancy images can improve image analysis and classification of normal PHM and CHM villi. The primary aim of this research project is to develop a novel method, based on anomaly detection, to identify and classify anomalous villi in molar pregnancy stained images. The novel method is developed to simulate expert pathologists’ approach in diagnosis of anomalous villi. The knowledge and heuristics elicited from two expert pathologists are combined with the morphological domain knowledge of molar pregnancy, to develop a heuristic multi-neural network architecture designed to classify the villi into their appropriated anomalous types. This study confirmed that a single feature cannot give enough discriminative power for villi classification. Whereas expert pathologists consider the size and shape before textural features, this thesis demonstrated that the textural feature has a higher discriminative power than size and shape. The first heuristic-based multi-neural network, which was based on 15 elicited features, achieved an improved average accuracy of 81.2%, compared to the traditional multi-layer perceptron (80.5%); however, the recall of CHM villi class was still low (64.3%). Two further textural features, which were elicited and added to the second heuristic-based multi-neural network, have improved the average accuracy from 81.2% to 86.1% and the recall of CHM villi class from 64.3% to 73.5%. The precision of the multi-neural network II has also increased from 82.7% to 89.5% for normal villi class, from 81.3% to 84.7% for PHM villi class and from 80.8% to 86% for CHM villi class. To support pathologists to visualise the results of the segmentation, a software tool, Hydatidiform Mole Analysis Tool (HYMAT), was developed compiling the morphological and pathological data for each villus analysis

    Self-adaptive structure semi-supervised methods for streamed emblematic gestures

    Get PDF
    Although many researchers try to improve the level of machine intelligence, there is still a long way to achieve intelligence similar to what humans have. Scientists and engineers are continuously trying to increase the level of smartness of the modern technology, i.e. smartphones and robotics. Humans communicate with each other by using the voice and gestures. Hence, gestures are essential to transfer the information to the partner. To reach a higher level of intelligence, the machine should learn from and react to the human gestures, which mean learning from continuously streamed gestures. This task faces serious challenges since processing streamed data suffers from different problems. Besides the stream data being unlabelled, the stream is long. Furthermore, “concept-drift” and “concept evolution” are the main problems of them. The data of the data streams have several other problems that are worth to be mentioned here, e.g. they are: dynamically changed, presented only once, arrived at high speed, and non-linearly distributed. In addition to the general problems of the data streams, gestures have additional problems. For example, different techniques are required to handle the varieties of gesture types. The available methods solve some of these problems individually, while we present a technique to solve these problems altogether. Unlabelled data may have additional information that describes the labelled data more precisely. Hence, semi-supervised learning is used to handle the labelled and unlabelled data. However, the data size increases continuously, which makes training classifiers so hard. Hence, we integrate the incremental learning technique with semi-supervised learning, which enables the model to update itself on new data without the need of the old data. Additionally, we integrate the incremental class learning within the semi-supervised learning, since there is a high possibility of incoming new concepts in the streamed gestures. Moreover, the system should be able to distinguish among different concepts and also should be able to identify random movements. Hence, we integrate the novelty detection to distinguish between the gestures that belong to the known concepts and those that belong to unknown concepts. The extreme value theory is used for this purpose, which overrides the need of additional labelled data to set the novelty threshold and has several other supportive features. Clustering algorithms are used to distinguish among different new concepts and also to identify random movements. Furthermore, the system should be able to update itself on only the trusty assignments, since updating the classifier on wrongly assigned gesture affects the performance of the system. Hence, we propose confidence measures for the assigned labels. We propose six types of semi-supervised algorithms that depend on different techniques to handle different types of gestures. The proposed classifiers are based on the Parzen window classifier, support vector machine classifier, neural network (extreme learning machine), Polynomial classifier, Mahalanobis classifier, and nearest class mean classifier. All of these classifiers are provided with the mentioned features. Additionally, we submit a wrapper method that uses one of the proposed classifiers or ensemble of them to autonomously issue new labels to the new concepts and update the classifiers on the newly incoming information depending on whether they belong to the known classes or new classes. It can recognise the different novel concepts and also identify random movements. To evaluate the system we acquired gesture data with nine different gesture classes. Each of them represents a different order to the machine e.g. come, go, etc. The data are collected using the Microsoft Kinect sensor. The acquired data contain 2878 gestures achieved by ten volunteers. Different sets of features are computed and used in the evaluation of the system. Additionally, we used real data, synthetic data and public data as support to the evaluation process. All the features, incremental learning, incremental class learning, and novelty detection are evaluated individually. The outputs of the classifiers are compared with the original classifier or with the benchmark classifiers. The results show high performances of the proposed algorithms
    corecore