2 research outputs found

    Fast Charging of Lithium-Ion Batteries Using Deep Bayesian Optimization with Recurrent Neural Network

    Full text link
    Fast charging has attracted increasing attention from the battery community for electrical vehicles (EVs) to alleviate range anxiety and reduce charging time for EVs. However, inappropriate charging strategies would cause severe degradation of batteries or even hazardous accidents. To optimize fast-charging strategies under various constraints, particularly safety limits, we propose a novel deep Bayesian optimization (BO) approach that utilizes Bayesian recurrent neural network (BRNN) as the surrogate model, given its capability in handling sequential data. In addition, a combined acquisition function of expected improvement (EI) and upper confidence bound (UCB) is developed to better balance the exploitation and exploration. The effectiveness of the proposed approach is demonstrated on the PETLION, a porous electrode theory-based battery simulator. Our method is also compared with the state-of-the-art BO methods that use Gaussian process (GP) and non-recurrent network as surrogate models. The results verify the superior performance of the proposed fast charging approaches, which mainly results from that: (i) the BRNN-based surrogate model provides a more precise prediction of battery lifetime than that based on GP or non-recurrent network; and (ii) the combined acquisition function outperforms traditional EI or UCB criteria in exploring the optimal charging protocol that maintains the longest battery lifetime

    Scalable Stochastic Gradient Riemannian Langevin Dynamics in Non-Diagonal Metrics

    Full text link
    Stochastic-gradient sampling methods are often used to perform Bayesian inference on neural networks. It has been observed that the methods in which notions of differential geometry are included tend to have better performances, with the Riemannian metric improving posterior exploration by accounting for the local curvature. However, the existing methods often resort to simple diagonal metrics to remain computationally efficient. This loses some of the gains. We propose two non-diagonal metrics that can be used in stochastic-gradient samplers to improve convergence and exploration but have only a minor computational overhead over diagonal metrics. We show that for fully connected neural networks (NNs) with sparsity-inducing priors and convolutional NNs with correlated priors, using these metrics can provide improvements. For some other choices the posterior is sufficiently easy also for the simpler metrics
    corecore