339 research outputs found
AutoSVD++: An Efficient Hybrid Collaborative Filtering Model via Contractive Auto-encoders
Collaborative filtering (CF) has been successfully used to provide users with
personalized products and services. However, dealing with the increasing
sparseness of user-item matrix still remains a challenge. To tackle such issue,
hybrid CF such as combining with content based filtering and leveraging side
information of users and items has been extensively studied to enhance
performance. However, most of these approaches depend on hand-crafted feature
engineering, which are usually noise-prone and biased by different feature
extraction and selection schemes. In this paper, we propose a new hybrid model
by generalizing contractive auto-encoder paradigm into matrix factorization
framework with good scalability and computational efficiency, which jointly
model content information as representations of effectiveness and compactness,
and leverage implicit user feedback to make accurate recommendations. Extensive
experiments conducted over three large scale real datasets indicate the
proposed approach outperforms the compared methods for item recommendation.Comment: 4 pages, 3 figure
A Survey on Bayesian Deep Learning
A comprehensive artificial intelligence system needs to not only perceive the
environment with different `senses' (e.g., seeing and hearing) but also infer
the world's conditional (or even causal) relations and corresponding
uncertainty. The past decade has seen major advances in many perception tasks
such as visual object recognition and speech recognition using deep learning
models. For higher-level inference, however, probabilistic graphical models
with their Bayesian nature are still more powerful and flexible. In recent
years, Bayesian deep learning has emerged as a unified probabilistic framework
to tightly integrate deep learning and Bayesian models. In this general
framework, the perception of text or images using deep learning can boost the
performance of higher-level inference and in turn, the feedback from the
inference process is able to enhance the perception of text or images. This
survey provides a comprehensive introduction to Bayesian deep learning and
reviews its recent applications on recommender systems, topic models, control,
etc. Besides, we also discuss the relationship and differences between Bayesian
deep learning and other related topics such as Bayesian treatment of neural
networks.Comment: To appear in ACM Computing Surveys (CSUR) 202
- …
