24,441 research outputs found

    Arithmetic of marked order polytopes, monotone triangle reciprocity, and partial colorings

    Full text link
    For a poset P, a subposet A, and an order preserving map F from A into the real numbers, the marked order polytope parametrizes the order preserving extensions of F to P. We show that the function counting integral-valued extensions is a piecewise polynomial in F and we prove a reciprocity statement in terms of order-reversing maps. We apply our results to give a geometric proof of a combinatorial reciprocity for monotone triangles due to Fischer and Riegler (2011) and we consider the enumerative problem of counting extensions of partial graph colorings of Herzberg and Murty (2007).Comment: 17 pages, 10 figures; V2: minor changes (including title); V3: examples included (suggested by referee), to appear in "SIAM Journal on Discrete Mathematics

    Comparing Experiments to the Fault-Tolerance Threshold

    Full text link
    Achieving error rates that meet or exceed the fault-tolerance threshold is a central goal for quantum computing experiments, and measuring these error rates using randomized benchmarking is now routine. However, direct comparison between measured error rates and thresholds is complicated by the fact that benchmarking estimates average error rates while thresholds reflect worst-case behavior when a gate is used as part of a large computation. These two measures of error can differ by orders of magnitude in the regime of interest. Here we facilitate comparison between the experimentally accessible average error rates and the worst-case quantities that arise in current threshold theorems by deriving relations between the two for a variety of physical noise sources. Our results indicate that it is coherent errors that lead to an enormous mismatch between average and worst case, and we quantify how well these errors must be controlled to ensure fair comparison between average error probabilities and fault-tolerance thresholds.Comment: 5 pages, 2 figures, 13 page appendi

    Improving compressed sensing with the diamond norm

    Full text link
    In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this work, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that -for a class of matrices saturating a certain norm inequality- the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this work touches on an aspect of the notoriously difficult tensor completion problem.Comment: 25 pages + Appendix, 7 Figures, published versio
    corecore