3,190,774 research outputs found

    Change of the plane of oscillation of a Foucault pendulum from simple pictures

    Full text link
    The change of the plane of oscillation of a Foucault pendulum is calculated without using equations of motion, the Gauss-Bonnet theorem, parallel transport, or assumptions that are difficult to explain.Comment: 5 pages, 4 figure

    Testing the ureilite projectile hypothesis for the El'gygytgyn impact: determination of siderophile element abundances and Os isotope ratios in ICDP drill core samples and melt rocks

    Get PDF
    The geochemical nature of the impactites from International Continental Scientific Drilling Project-El'gygytgyn lake drill core 1C is compared with that of impact melt rock fragments collected near the western rim of the structure and literature data. Concentrations of major and trace elements, with special focus on siderophile metals Cr, Co, Ni, and the platinum group elements, and isotope ratios of osmium (Os), were determined to test the hypothesis of an ureilite impactor at El'gygytgyn. Least squares mixing calculations suggest that the upper volcanic succession of rhyolites, dacites, and andesites were the main contributors to the polymict impact breccias. Additions of 2-13.5 vol% of basaltic inclusions recovered from drill core intervals between 391.6 and 423.0 mblf can almost entirely account for the compositional differences observed for the bottom of a reworked fallout deposit at 318.9 mblf, a polymict impact breccia at 471.4 mblf, and three impact melt rock fragments. However, the measured Os isotope ratios and slightly elevated PGE content (up to 0.262 ng g(-1) Ir) of certain impactite samples, for which the CI-normalized logarithmic PGE signature displays a relatively flat (i.e., chondritic) pattern, can only be explained by the incorporation of a small meteoritic contribution. This component is also required to explain the exceptionally high siderophile element contents and corresponding Ni/Cr, Ni/Co, and Cr/Co ratios of impact glass spherules and spherule fragments that were recovered from the reworked fallout deposits and from terrace outcrops of the Enmyvaam River approximately 10 km southeast of the crater center. Mixing calculations support the presence of approximately 0.05 wt% and 0.50-18 wt% of ordinary chondrite (possibly type-LL) in several impactites and in the glassy spherules, respectively. The heterogeneous distribution of the meteoritic component provides clues for emplacement mechanisms of the various impactite units

    Insights into secondary reactions occurring during atmospheric ablation of micrometeoroids

    Get PDF
    Ablation of micrometeoroids during atmospheric entry yields volatile gases such as water, carbon dioxide, and sulfur dioxide, capable of altering atmospheric chemistry and hence the climate and habitability of the planetary surface. While laboratory experiments have revealed the yields of these gases during laboratory simulations of ablation, the reactions responsible for the generation of these gases have remained unclear, with a typical assumption being that species simply undergo thermal decomposition without engaging in more complex chemistry. Here, pyrolysis–Fourier transform infrared spectroscopy reveals that mixtures of meteorite-relevant materials undergo secondary reactions during simulated ablation, with organic matter capable of taking part in carbothermic reduction of iron oxides and sulfates, resulting in yields of volatile gases that differ from those predicted by simple thermal decomposition. Sulfates are most susceptible to carbothermic reduction, producing greater yields of sulfur dioxide and carbon dioxide at lower temperatures than would be expected from simple thermal decomposition, even when mixed with meteoritically relevant abundances of low-reactivity Type IV kerogen. Iron oxides were less susceptible, with elevated yields of water, carbon dioxide, and carbon monoxide only occurring when mixed with high abundances of more reactive Type III kerogen. We use these insights to reinterpret previous ablation simulation experiments and to predict the reactions capable of occurring during ablation of carbonaceous micrometeoroids in atmospheres of different compositions

    Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation

    Get PDF
    Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile-bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk-rock basaltic composition and that of bulk-mesostasis regions, indicating that bulk-rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late-stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite-melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts

    The Origins of I-type Spherules and the Atmospheric Entry of Iron Micrometeoroids.

    Get PDF
    The Earth's extraterrestrial dust flux includes a wide variety of dust particles that include FeNi metallic grains. During their atmospheric entry iron micrometeoroids melt and oxidize to form cosmic spherules termed I-type spherules. These particles are chemically resistant and readily collected by magnetic separation and are thus the most likely micrometeorites to be recovered from modern and ancient sediments. Understanding their behavior during atmospheric entry is crucial in constraining their abundance relative to other particle types and the nature of the zodiacal dust population at 1 AU. This paper presents numerical simulations of the atmospheric entry heating of iron meteoroids in order to investigate the abundance and nature of these materials. The results indicate that iron micrometeoroids experience peak temperatures 300-800K higher than silicate particles explaining the rarity of unmelted iron particles which can only be present at sizes of <50 m. The lower evaporation rates of liquid iron oxide leads to greater survival of iron particles compared with silicates, which enhances their abundance amongst micrometeorites by a factor of 2. The abundance of I-types is shown to be broadly consistent with the abundance and size of metal in ordinary chondrites and the current day flux of ordinary chondrite-derived MMs arriving at Earth. Furthermore, carbonaceous asteroids and cometary dust are suggested to make negligible contributions to the I-type spherule flux. Events involving such objects, therefore, cannot be recognized from I-type spherule abundances in the geological record

    Early Mars volcanic sulfur storage in the cryosphere and formation of transient SO2-rich atmospheres during the Hesperian

    Full text link
    In a previous paper (Chassefi\`ere et al., Icarus 223, 878-891, 2013), we have shown that most volcanic sulfur released to early Mars atmosphere could have been trapped in the cryosphere under the form of CO2-SO2 clathrates. Huge amounts of sulfur, up to the equivalent of a ~1 bar atmosphere of SO2, would have been stored in the Noachian cryosphere, then massively released to the atmosphere during Hesperian due to rapidly decreasing CO2 pressure. It would have resulted in the formation of the large sulfate deposits observed mainly in Hesperian terrains, whereas no or little sulfates are found at the Noachian. In the present paper, we first clarify some aspects of our previous work. We discuss the possibility of a smaller cooling effect of sulfur particles, or even of a net warming effect. We point out the fact that CO2-SO2 clathrates formed through a progressive enrichment of a preexisting reservoir of CO2 clathrates and discuss processes potentially involved in the slow formation of a SO2-rich upper cryosphere. We show that episodes of sudden destabilization at the Hesperian may generate 1000 ppmv of SO2 in the atmosphere and contribute to maintaining the surface temperature above the water freezing point.Comment: 15 pages, 1 figur

    Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks 94101: evidence for aqueous alteration prior to complex mixing

    Get PDF
    Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks (LON) 94101 have been characterized using scanning and transmission electron microscopy and electron microprobe analysis to determine their degrees of aqueous alteration, and the timing of alteration relative to incorporation of clasts into the host. The provenance of the clasts, and the mechanism by which they were incorporated and mixed with their host material are also considered. Results show that at least five distinct types of clasts occur in LON 94101, of which four have been aqueously altered to various degrees and one is largely anhydrous. The fact that they have had different alteration histories implies that the main part of aqueous activity occurred prior to the mixing and assimilation of the clasts with their host. Further, the presence of such a variety of clasts suggests complex mixing in a dynamic environment involving material from various sources. Two of the clasts, one containing approximately 46 vol% carbonate and the other featuring crystals of pyrrhotite up to approximately 1 mm in size, are examples of unusual lithologies and indicate concentration of chemical elements in discrete areas of the parent body(ies), possibly by flow of aqueous solutions
    corecore