115 research outputs found

    Minimization of Quantum Circuits using Quantum Operator Forms

    Get PDF
    In this paper we present a method for minimizing reversible quantum circuits using the Quantum Operator Form (QOF); a new representation of quantum circuit and of quantum-realized reversible circuits based on the CNOT, CV and CV†^\dagger quantum gates. The proposed form is a quantum extension to the well known Reed-Muller but unlike the Reed-Muller form, the QOF allows the usage of different quantum gates. Therefore QOF permits minimization of quantum circuits by using properties of different gates than only the multi-control Toffoli gates. We introduce a set of minimization rules and a pseudo-algorithm that can be used to design circuits with the CNOT, CV and CV†^\dagger quantum gates. We show how the QOF can be used to minimize reversible quantum circuits and how the rules allow to obtain exact realizations using the above mentioned quantum gates.Comment: 11 pages, 14 figures, Proceedings of the ULSI Workshop 2012 (@ISMVL 2012

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table
    • …
    corecore