2,331 research outputs found

    Augmented Terrain-Based Navigation to Enable Persistent Autonomy for Underwater Vehicles in GPS-Denied Environments

    Get PDF
    Aquatic robots, such as Autonomous Underwater Vehicles (AUVs), play a major role in the study of ocean processes that require long-term sampling efforts and commonly perform navigation via dead-reckoning using an accelerometer, a magnetometer, a compass, an IMU and a depth sensor for feedback. However, these instruments are subjected to large drift, leading to unbounded uncertainty in location. Moreover, the spatio-temporal dynamics of the ocean environment, coupled with limited communication capabilities, make navigation and localization difficult, especially in coastal regions where the majority of interesting phenomena occur. To add to this, the interesting features are themselves spatio-temporally dynamic, and effective sampling requires a good understanding of vehicle localization relative to the sampled feature. Therefore, our work is motivated by the desire to enable intelligent data collection of complex dynamics and processes that occur in coastal ocean environments to further our understanding and prediction capabilities. The study originated from the need to localize and navigate aquatic robots in a GPS-denied environment and examine the role of the spatio-temporal dynamics of the ocean into the localization and navigation processes. The methods and techniques needed range from the data collection to the localization and navigation algorithms used on-board of the aquatic vehicles. The focus of this work is to develop algorithms for localization and navigation of AUVs in GPS-denied environments. We developed an Augmented terrain-based framework that incorporates physical science data, i.e., temperature, salinity, pH, etc., to enhance the topographic map that the vehicle uses to navigate. In this navigation scheme, the bathymetric data are combined with the physical science data to enrich the uniqueness of the underlying terrain map and increase the accuracy of underwater localization. Another technique developed in this work addresses the problem of tracking an underwater vehicle when the GPS signal suddenly becomes unavailable. The methods include the whitening of the data to reveal the true statistical distance between datapoints and also incorporates physical science data to enhance the topographic map. Simulations were performed at Lake Nighthorse, Colorado, USA, between April 25th and May 2nd 2018 and at Big Fisherman\u27s Cove, Santa Catalina Island, California, USA, on July 13th and July 14th 2016. Different missions were executed on different environments (snow, rain and the presence of plumes). Results showed that these two methodologies for localization and tracking work for reference maps that had been recorded within a week and the accuracy on the average error in localization can be compared to the errors found when using GPS if the time in which the observations were taken are the same period of the day (morning, afternoon or night). The whitening of the data had positive results when compared to localizing without whitening

    Bridge Inspection: Human Performance, Unmanned Aerial Systems and Automation

    Get PDF
    Unmanned aerial systems (UASs) have become of considerable private and commercial interest for a variety of jobs and entertainment in the past 10 years. This paper is a literature review of the state of practice for the United States bridge inspection programs and outlines how automated and unmanned bridge inspections can be made suitable for present and future needs. At its best, current technology limits UAS use to an assistive tool for the inspector to perform a bridge inspection faster, safer, and without traffic closure. The major challenges for UASs are satisfying restrictive Federal Aviation Administration regulations, control issues in a GPS-denied environment, pilot expenses and availability, time and cost allocated to tuning, maintenance, post-processing time, and acceptance of the collected data by bridge owners. Using UASs with self-navigation abilities and improving image-processing algorithms to provide results near real-time could revolutionize the bridge inspection industry by providing accurate, multi-use, autonomous three-dimensional models and damage identification

    Localization and Mapping from Shore Contours and Depth

    Get PDF
    This work examines the problem of solving SLAM in aquatic environments using an unmanned surface vessel under conditions that restrict global knowledge of the robot's pose. These conditions refer specifically to the absence of a global positioning system to estimate position, a poor vehicle motion model, and absence of magnetic field to estimate absolute heading. These conditions are present in terrestrial environments where GPS satellite reception is occluded by surrounding structures and magnetic inference affects compass measurements. Similar conditions are anticipated in extra-terrestrial environments such as on Titan which lacks the infrastructure necessary for traditional positioning sensors and the unstable magnetic core renders compasses useless. This work develops a solution to the SLAM problem that utilizes shore features coupled with information about the depth of the water column. The approach is validated experimentally using an autonomous surface vehicle utilizing omnidirectional video and SONAR, results are compared to GPS ground truth

    Unmanned Aerial Systems (UASs) for Environmental Monitoring: A Review with Applications in Coastal Habitats

    Get PDF
    Nowadays the proliferation of small unmanned aerial systems or vehicles (UAS/Vs), formerly known as drones, coupled with an increasing interest in tools for environmental monitoring, have led to an exponential use of these unmanned aerial platforms for many applications in the most diverse fields of science. In particular, ecologists require data collected at appropriate spatial and temporal resolutions to describe ecological processes. For these reasons, we are witnessing the proliferation of UAV-based remote sensing techniques because they provide new perspectives on ecological phenomena that would otherwise be difficult to study. Therefore, we propose a brief review regarding the emerging applications of low-cost aerial platforms in the field of environmental sciences such as assessment of vegetation dynamics and forests biodiversity, wildlife research and management, map changes in freshwater marshes, river habitat mapping, and conservation and monitoring programs. In addition, we describe two applications of habitat mapping from UAS-based imagery, along the Central Mediterranean coasts, as study cases: (1) The upper limit of a Posidonia oceanica meadow was mapped to detect impacted areas, (2) high-resolution orthomosaic was used for supporting underwater visual census data in order to visualize juvenile fish densities and microhabitat use in four shallow coastal nurseries

    A drone-based survey for large, basking freshwater turtle species

    Get PDF
    Conservation concerns are increasing for numerous freshwater turtle species, including Pseudemys gorzugi, which has led to a call for more research. However, traditional sampling methodologies are often time consuming, labor intensive, and invasive, restricting the amount of data that can be collected. Biases of traditional sampling methods can further impair the quality of the data collected, and these shortfalls may discourage their use. The use of unmanned aerial vehicles (UAVs, drones) for conducting wildlife surveys has recently demonstrated the potential to bridge gaps in data collection by offering a less labor intensive, minimally invasive, and more efficient process. Photographs and video can be obtained by camera attachments during a drone flight and analyzed to determine population counts, abundance, and other types of data. In this study we developed a detailed protocol to survey for large, freshwater turtle species in an arid, riverine landscape. This protocol was implemented with a DJI Matrice 600 Pro drone and a SONY ILCE α6000 digital camera to determine P. gorzugi and sympatric turtle species occurrence across 42 sites in southwestern Texas, USA. The use of a large drone and high-resolution camera resulted in high identification percentages, demonstrating the potential of drones to survey for large, freshwater turtle species. Numerous advantages to drone-based surveys were identified as well as some challenges, which were addressed with additional refinement of the protocol. Our data highlight the utility of drones for conducting freshwater turtle surveys and provide a guideline to those considering implementing drone-mounted high-resolution cameras as a survey tool

    Field-based measurement of hydrodynamics associated with engineered in-channel structures: the example of fish pass assessment

    Get PDF
    The construction of fish passes has been a longstanding measure to improve river ecosystem status by ensuring the passability of weirs, dams and other in- channel structures for migratory fish. Many fish passes have a low biological effectiveness because of unsuitable hydrodynamic conditions hindering fish to rapidly detect the pass entrance. There has been a need for techniques to quantify the hydrodynamics surrounding fish pass entrances in order to identify those passes that require enhancement and to improve the design of new passes. This PhD thesis presents the development of a methodology for the rapid, spatially continuous quantification of near-pass hydrodynamics in the field. The methodology involves moving-vessel Acoustic Doppler Current Profiler (ADCP) measurements in order to quantify the 3-dimensional water velocity distribution around fish pass entrances. The approach presented in this thesis is novel because it integrates a set of techniques to make ADCP data robust against errors associated with the environmental conditions near engineered in-channel structures. These techniques provide solutions to (i) ADCP compass errors from magnetic interference, (ii) bias in water velocity data caused by spatial flow heterogeneity, (iii) the accurate ADCP positioning in locales with constrained line of sight to navigation satellites, and (iv) the accurate and cost-effective sensor deployment following pre-defined sampling strategies. The effectiveness and transferability of the methodology were evaluated at three fish pass sites covering conditions of low, medium and high discharge. The methodology outputs enabled a detailed quantitative characterisation of the fish pass attraction flow and its interaction with other hydrodynamic features. The outputs are suitable to formulate novel indicators of hydrodynamic fish pass attractiveness and they revealed the need to refine traditional fish pass design guidelines

    Science, technology and the future of small autonomous drones

    Get PDF
    We are witnessing the advent of a new era of robots — drones — that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications

    A cooperative navigation system with distributed architecture for multiple unmanned aerial vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs) have been widely used in many applications due to, among other features, their versatility, reduced operating cost, and small size. These applications increasingly demand that features related to autonomous navigation be employed, such as mapping. However, the reduced capacity of resources such as, for example, battery and hardware (memory and processing units) can hinder the development of these applications in UAVs. Thus, the collaborative use of multiple UAVs for mapping can be used as an alternative to solve this problem, with a cooperative navigation system. This system requires that individual local maps be transmitted and merged into a global map in a distributed manner. In this scenario, there are two main problems to be addressed: the transmission of maps among the UAVs and the merging of the local maps in each UAV. In this context, this work describes the design, development, and evaluation of a cooperative navigation system with distributed architecture to be used by multiple UAVs. This system uses proposed structures to store the 3D occupancy grid maps. Furthermore, maps are compressed and transmitted between UAVs using algorithms specially proposed for these purposes. Then the local 3D maps are merged in each UAV. In this map merging system, maps are processed before and merged in pairs using suitable algorithms to make them compatible with the 3D occupancy grid map data. In addition, keypoints orientation properties are obtained from potential field gradients. Some proposed filters are used to improve the parameters of the transformations among maps. To validate the proposed solution, simulations were performed in six different environments, outdoors and indoors, and with different layout characteristics. The obtained results demonstrate the effectiveness of thesystemin the construction, sharing, and merging of maps. Still, from the obtained results, the extreme complexity of map merging systems is highlighted.Os veículos aéreos não tripulados (VANTs) têm sidoamplamenteutilizados em muitas aplicações devido, entre outrosrecursos,à sua versatilidade, custo de operação e tamanho reduzidos. Essas aplicações exigem cadavez mais que recursos relacionados à navegaçãoautônoma sejam empregados,como o mapeamento. No entanto, acapacidade reduzida de recursos como, por exemplo, bateria e hardware (memória e capacidade de processamento) podem atrapalhar o desenvolvimento dessas aplicações em VANTs.Assim, o uso colaborativo de múltiplosVANTs para mapeamento pode ser utilizado como uma alternativa para resolvereste problema, criando um sistema de navegaçãocooperativo. Estesistema requer que mapas locais individuais sejam transmitidos efundidos em um mapa global de forma distribuída.Nesse cenário, há doisproblemas principais aserem abordados:a transmissão dosmapas entre os VANTs e afusão dos mapas locais em cada VANT. Nestecontexto, estatese apresentao projeto, desenvolvimento e avaliaçãode um sistema de navegação cooperativo com arquitetura distribuída para ser utilizado pormúltiplos VANTs. Este sistemausa estruturas propostas para armazenaros mapasdegradedeocupação 3D. Além disso, os mapas são compactados e transmitidos entre os VANTs usando os algoritmos propostos. Em seguida, os mapas 3D locais são fundidos em cada VANT. Neste sistemade fusão de mapas, os mapas são processados antes e juntados em pares usando algunsalgoritmos adequados para torná-los compatíveiscom os dados dos mapas da grade de ocupação 3D. Além disso, as propriedadesde orientação dos pontoschave são obtidas a partir de gradientes de campos potenciais. Alguns filtros propostos são utilizadospara melhorar as indicações dos parâmetros dastransformações entre mapas. Paravalidar a aplicação proposta, foram realizadas simulações em seis ambientes distintos, externos e internos, e com características construtivas distintas. Os resultados apresentados demonstram a efetividade do sistema na construção, compartilhamento e fusão dos mapas. Ainda, a partir dos resultados obtidos, destaca-se a extrema complexidade dos sistemas de fusão de mapas
    corecore