6,671 research outputs found

    Launching the Grand Challenges for Ocean Conservation

    Get PDF
    The ten most pressing Grand Challenges in Oceans Conservation were identified at the Oceans Big Think and described in a detailed working document:A Blue Revolution for Oceans: Reengineering Aquaculture for SustainabilityEnding and Recovering from Marine DebrisTransparency and Traceability from Sea to Shore:  Ending OverfishingProtecting Critical Ocean Habitats: New Tools for Marine ProtectionEngineering Ecological Resilience in Near Shore and Coastal AreasReducing the Ecological Footprint of Fishing through Smarter GearArresting the Alien Invasion: Combating Invasive SpeciesCombatting the Effects of Ocean AcidificationEnding Marine Wildlife TraffickingReviving Dead Zones: Combating Ocean Deoxygenation and Nutrient Runof

    Utilizing a biology-driven approach to map the exposome in health and disease:An essential investment to drive the next generation of environmental discovery

    Get PDF
    BACKGROUND: Recent developments in technologies have offered opportunities to measure the exposome with unprecedented accuracy and scale. However, because most investigations have targeted only a few exposures at a time, it is hypothesized that the majority of the environmental determinants of chronic diseases remain unknown. OBJECTIVES: We describe a functional exposome concept and explain how it can leverage existing bioassays and high-resolution mass spectrometry for exploratory study. We discuss how such an approach can address well-known barriers to interpret exposures and present a vision of next-generation exposomics. DISCUSSION: The exposome is vast. Instead of trying to capture all exposures, we can reduce the complexity by measuring the functional exposome— the totality of the biologically active exposures relevant to disease development—through coupling biochemical receptor-binding assays with affinity purification–mass spectrometry. We claim the idea of capturing exposures with functional biomolecules opens new opportunities to solve critical problems in exposomics, including low-dose detection, unknown annotations, and complex mixtures of exposures. Although novel, biology-based measurement can make use of the existing data processing and bioinformatics pipelines. The functional exposome concept also complements conven-tional targeted and untargeted approaches for understanding exposure-disease relationships. CONCLUSIONS: Although measurement technology has advanced, critical technological, analytical, and inferential barriers impede the detection of many environmental exposures relevant to chronic-disease etiology. Through biology-driven exposomics, it is possible to simultaneously scale up discovery of these causal environmental factors. https://doi.org/10.1289/EHP8327

    Artificial Intelligence for Drug Discovery: Are We There Yet?

    Full text link
    Drug discovery is adapting to novel technologies such as data science, informatics, and artificial intelligence (AI) to accelerate effective treatment development while reducing costs and animal experiments. AI is transforming drug discovery, as indicated by increasing interest from investors, industrial and academic scientists, and legislators. Successful drug discovery requires optimizing properties related to pharmacodynamics, pharmacokinetics, and clinical outcomes. This review discusses the use of AI in the three pillars of drug discovery: diseases, targets, and therapeutic modalities, with a focus on small molecule drugs. AI technologies, such as generative chemistry, machine learning, and multi-property optimization, have enabled several compounds to enter clinical trials. The scientific community must carefully vet known information to address the reproducibility crisis. The full potential of AI in drug discovery can only be realized with sufficient ground truth and appropriate human intervention at later pipeline stages.Comment: 30 pages, 4 figures, 184 reference

    Entropy-scaling search of massive biological data

    Get PDF
    Many datasets exhibit a well-defined structure that can be exploited to design faster search tools, but it is not always clear when such acceleration is possible. Here, we introduce a framework for similarity search based on characterizing a dataset's entropy and fractal dimension. We prove that searching scales in time with metric entropy (number of covering hyperspheres), if the fractal dimension of the dataset is low, and scales in space with the sum of metric entropy and information-theoretic entropy (randomness of the data). Using these ideas, we present accelerated versions of standard tools, with no loss in specificity and little loss in sensitivity, for use in three domains---high-throughput drug screening (Ammolite, 150x speedup), metagenomics (MICA, 3.5x speedup of DIAMOND [3,700x BLASTX]), and protein structure search (esFragBag, 10x speedup of FragBag). Our framework can be used to achieve "compressive omics," and the general theory can be readily applied to data science problems outside of biology.Comment: Including supplement: 41 pages, 6 figures, 4 tables, 1 bo

    Natural products in drug discovery: advances and opportunities

    Get PDF
    Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities

    AtomLbs: An Atom Based Convolutional Neural Network for Druggable Ligand Binding Site Prediction

    Get PDF
    Despite advances in drug research and development, there are few and ineffective treatments for a variety of diseases. Virtual screening can drastically reduce costs and accelerate the drug discovery process. Binding site identification is one of the initial and most important steps in structure-based virtual screening. Identifying and defining protein cavities that are likely to bind to a small compound is the objective of this task. In this research, we propose four different convolutional neural networks for predicting ligand-binding sites in proteins. A parallel optimized data pipeline is created to enable faster training of these neural network models on minimal hardware. The effectiveness of each method is assessed on well-established ligand binding site datasets. It is then compared with the state-of-the-art and widely used methods for ligand binding site identification. The result shows that our methods outperform most of the other methods and are comparable to the state-of-the-art methods

    Computational biology in the 21st century

    Get PDF
    Computational biologists answer biological and biomedical questions by using computation in support of—or in place of—laboratory procedures, hoping to obtain more accurate answers at a greatly reduced cost. The past two decades have seen unprecedented technological progress with regard to generating biological data; next-generation sequencing, mass spectrometry, microarrays, cryo-electron microscopy, and other highthroughput approaches have led to an explosion of data. However, this explosion is a mixed blessing. On the one hand, the scale and scope of data should allow new insights into genetic and infectious diseases, cancer, basic biology, and even human migration patterns. On the other hand, researchers are generating datasets so massive that it has become difficult to analyze them to discover patterns that give clues to the underlying biological processes.National Institutes of Health. (U.S.) ( grant GM108348)Hertz Foundatio
    • …
    corecore