1,808 research outputs found

    A Domain Agnostic Normalization Layer for Unsupervised Adversarial Domain Adaptation

    Full text link
    We propose a normalization layer for unsupervised domain adaption in semantic scene segmentation. Normalization layers are known to improve convergence and generalization and are part of many state-of-the-art fully-convolutional neural networks. We show that conventional normalization layers worsen the performance of current Unsupervised Adversarial Domain Adaption (UADA), which is a method to improve network performance on unlabeled datasets and the focus of our research. Therefore, we propose a novel Domain Agnostic Normalization layer and thereby unlock the benefits of normalization layers for unsupervised adversarial domain adaptation. In our evaluation, we adapt from the synthetic GTA5 data set to the real Cityscapes data set, a common benchmark experiment, and surpass the state-of-the-art. As our normalization layer is domain agnostic at test time, we furthermore demonstrate that UADA using Domain Agnostic Normalization improves performance on unseen domains, specifically on Apolloscape and Mapillary

    Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation

    Full text link
    We propose a convolutional network with hierarchical classifiers for per-pixel semantic segmentation, which is able to be trained on multiple, heterogeneous datasets and exploit their semantic hierarchy. Our network is the first to be simultaneously trained on three different datasets from the intelligent vehicles domain, i.e. Cityscapes, GTSDB and Mapillary Vistas, and is able to handle different semantic level-of-detail, class imbalances, and different annotation types, i.e. dense per-pixel and sparse bounding-box labels. We assess our hierarchical approach, by comparing against flat, non-hierarchical classifiers and we show improvements in mean pixel accuracy of 13.0% for Cityscapes classes and 2.4% for Vistas classes and 32.3% for GTSDB classes. Our implementation achieves inference rates of 17 fps at a resolution of 520x706 for 108 classes running on a GPU.Comment: IEEE Intelligent Vehicles 201

    Panoptic Segmentation

    Full text link
    We propose and study a task we name panoptic segmentation (PS). Panoptic segmentation unifies the typically distinct tasks of semantic segmentation (assign a class label to each pixel) and instance segmentation (detect and segment each object instance). The proposed task requires generating a coherent scene segmentation that is rich and complete, an important step toward real-world vision systems. While early work in computer vision addressed related image/scene parsing tasks, these are not currently popular, possibly due to lack of appropriate metrics or associated recognition challenges. To address this, we propose a novel panoptic quality (PQ) metric that captures performance for all classes (stuff and things) in an interpretable and unified manner. Using the proposed metric, we perform a rigorous study of both human and machine performance for PS on three existing datasets, revealing interesting insights about the task. The aim of our work is to revive the interest of the community in a more unified view of image segmentation.Comment: accepted to CVPR 201

    In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

    Full text link
    In this work we present In-Place Activated Batch Normalization (InPlace-ABN) - a novel approach to drastically reduce the training memory footprint of modern deep neural networks in a computationally efficient way. Our solution substitutes the conventionally used succession of BatchNorm + Activation layers with a single plugin layer, hence avoiding invasive framework surgery while providing straightforward applicability for existing deep learning frameworks. We obtain memory savings of up to 50% by dropping intermediate results and by recovering required information during the backward pass through the inversion of stored forward results, with only minor increase (0.8-2%) in computation time. Also, we demonstrate how frequently used checkpointing approaches can be made computationally as efficient as InPlace-ABN. In our experiments on image classification, we demonstrate on-par results on ImageNet-1k with state-of-the-art approaches. On the memory-demanding task of semantic segmentation, we report results for COCO-Stuff, Cityscapes and Mapillary Vistas, obtaining new state-of-the-art results on the latter without additional training data but in a single-scale and -model scenario. Code can be found at https://github.com/mapillary/inplace_abn
    corecore