2,325 research outputs found

    Many-to-One Boundary Labeling with Backbones

    Full text link
    In this paper we study \emph{many-to-one boundary labeling with backbone leaders}. In this new many-to-one model, a horizontal backbone reaches out of each label into the feature-enclosing rectangle. Feature points that need to be connected to this label are linked via vertical line segments to the backbone. We present dynamic programming algorithms for label number and total leader length minimization of crossing-free backbone labelings. When crossings are allowed, we aim to obtain solutions with the minimum number of crossings. This can be achieved efficiently in the case of fixed label order, however, in the case of flexible label order we show that minimizing the number of leader crossings is NP-hard.Comment: 23 pages, 10 figures, this is the full version of a paper that is about to appear in GD'1

    Rapid algorithm for identifying backbones in the two-dimensional percolation model

    Full text link
    We present a rapid algorithm for identifying the current-carrying backbone in the percolation model. It applies to general two-dimensional graphs with open boundary conditions. Complemented by the modified Hoshen-Kopelman cluster labeling algorithm, our algorithm identifies dangling parts using their local properties. For planar graphs, it finds the backbone almost four times as fast as Tarjan's depth-first-search algorithm, and uses the memory of the same size as the modified Hoshen-Kopelman algorithm. Comparison with other algorithms for backbone identification is addressed.Comment: 5 pages with 5 eps figures. RevTeX 3.1. Clarify the origin of the hull-generating algorith

    Models of discretized moduli spaces, cohomological field theories, and Gaussian means

    Get PDF
    We prove combinatorially the explicit relation between genus filtrated ss-loop means of the Gaussian matrix model and terms of the genus expansion of the Kontsevich--Penner matrix model (KPMM). The latter is the generating function for volumes of discretized (open) moduli spaces Mg,sdiscM_{g,s}^{\mathrm{disc}} given by Ng,s(P1,…,Ps)N_{g,s}(P_1,\dots,P_s) for (P1,…,Ps)∈Z+s(P_1,\dots,P_s)\in{\mathbb Z}_+^s. This generating function therefore enjoys the topological recursion, and we prove that it is simultaneously the generating function for ancestor invariants of a cohomological field theory thus enjoying the Givental decomposition. We use another Givental-type decomposition obtained for this model by the second authors in 1995 in terms of special times related to the discretisation of moduli spaces thus representing its asymptotic expansion terms (and therefore those of the Gaussian means) as finite sums over graphs weighted by lower-order monomials in times thus giving another proof of (quasi)polynomiality of the discrete volumes. As an application, we find the coefficients in the first subleading order for Mg,1{\mathcal M}_{g,1} in two ways: using the refined Harer--Zagier recursion and by exploiting the above Givental-type transformation. We put forward the conjecture that the above graph expansions can be used for probing the reduction structure of the Delgne--Mumford compactification M‾g,s\overline{\mathcal M}_{g,s} of moduli spaces of punctured Riemann surfaces.Comment: 36 pages in LaTex, 6 LaTex figure
    • …
    corecore