3 research outputs found

    Investigation of the influence of an oscillation superposition on the wear behaviour in an industrial-like process

    Get PDF
    In cold forging processes as well as in sheet-bulk metal forming, vast contact stresses result in severe tool wear and thus in tool failures. In order to achieve a sustainable production, a new manufacturing process is developed within the subproject T06 in the transregional collaborative research centre 73 at the Institute of Forming Technology and Machines (IFUM). In this subproject the influence of an oscillation superposition on a forming process is investigated. The new type of sheet-bulk metal forming (SBMF) process manufactures a component with internal and external gearing. Contact normal stresses and thus tool wear could be reduced by applying an oscillation superposition in the main force flow of the machine. To verify the positive results in other processes, the oscillation method is applied to an industrial-like process based on anchor bolt manufacturing of Fischerwerke GmbH & Co. KG. For this purpose, a representative tool system is developed using numerical simulation. The numerical simulation is also used to investigate resulting local contact stresses and relative sliding velocities. Furthermore, cylinder compression tests with and without oscillation superposition are conducted for the workpiece stainless steel 1.4362 (AISI S32304), in order to qualify the reduction of contact stress

    Functional Analysis of Components Manufactured by a Sheet-Bulk Metal Forming Process

    Get PDF
    Due to rising demands regarding the functionality and load-bearing capacity of functional components such as synchronizer rings in gear systems, conventional forming operations are reaching their limits with respect to formability and efficiency. One way to meet these challenges is the application of the innovative process class of sheet-bulk metal forming (SBMF). By applying bulk forming operations to sheet metal, the advantages of both process classes can be combined, thus realizing an optimized part weight and an adapted load-bearing capacity. Different approaches to manufacturing relevant part geometries were presented and evaluated regarding the process properties and applicability. In this contribution, a self-learning engineering workbench was used to provide geometry-based data regarding a novel component geometry with circumferential involute gearing manufactured in an SBMF process combination of deep drawing and upsetting. Within the comprehensive investigations, the mechanical and geometrical properties of the part were analyzed. Moreover, the manufactured components were compared regarding the increased fatigue strength in cyclic load tests. With the gained experimental and numerical data, the workbench was used for the first time to generate the desired component as a CAD model, as well as to derive design guidelines referring to the investigated properties and fatigue behavior
    corecore