108,353 research outputs found
Characterization of GDP-mannose Pyrophosphorylase from Escherichia Coli O157:H7 EDL933 and Its Broad Substrate Specificity
GDP-mannose pyrophosphorylase gene (ManC) of Escherichia coli (E. coli) O157 was cloned and expressed as a highly soluble protein in E. coli BL21 (DE3). The enzyme was subsequently purified using hydrophobic and ion exchange chromatographies. ManC showed very broad substrate specificities for four nucleotides and various hexose-1-phosphates, yielding ADP-mannose, CDP-mannose, UDP-mannose, GDP-mannose, GDP-glucose and GDP-2-deoxy-glucose
D-mannose transport and metabolism in isolated enterocytes
D-mannose transport and metabolism has been studied in enterocytes isolated from chicken small intestine. In the presence of Na+, the mannose taken up by the cells either remains free, is phosphorylated, is catabolized to H2O, or becomes part of membrane components. The mannose remaining free in the cytosol is released when the cells are transferred to an ice bath. The Na+-dependent D-mannose transport is electrogenic and inhibited by ouabain and dinitrophenol; its substrate specificity differs from SGLT-1 transporter. The Glut2 transporter inhibitors phloretin and cytochalasin B added following 30-min mannose uptake reduced the previously accumulated D-mannose, whereas these two agents increased the cell to external medium 3-O-methyl-glucose (3-OMG) concentration ratio. D-mannose efflux rate from preloaded D-[2-3H]-mannose enterocytes is Na+-independent. Phloretin did not affect D-mannose efflux rate, whereas it inhibited that of 3-OMG. Neither mannose uptake nor efflux rate were affected by fructose. It is concluded that part of the mannose taken up by the enterocytes is rapidly metabolized and that enterocytes have two D-mannose transport systems: one is concentrative and Na+-dependent and the other is Na+-independent and passive.Dirección General de Investiagación Científica y Técnica PM99-012
Na+-dependent D-mannose transport at the apical membrane of rat small intestine and kidney cortex
The presence of a Na+/D-mannose cotransport activity in brush-border membrane vesicles (BBMV), isolated from either rat small intestine or rat kidney cortex, is examined. In the presence of an electrochemical Na+ gradient, but not in its absence, D-mannose was transiently accumulated by the BBMV. D-Mannose uptake into the BBMV was energized by both the electrical membrane potential and the Na+ chemical gradient. D-Mannose transport vs. external D-mannose concentration can be described by an equation that represents a superposition of a saturable component and another component that cannot be saturated up to 50 μM D-mannose. D-Mannose uptake was inhibited by D-mannose ≫ D-glucose > phlorizin, whereas for α-methyl glucopyranoside the order was D-glucose = phlorizin ≫ D-mannose. The initial rate of D-mannose uptake increased as the extravesicular Na+ concentration increased, with a Hill coefficient of 1, suggesting that the Na+ :D-mannose cotransport stoichiometry is 1:1. It is concluded that both rat intestinal and renal apical membrane have a concentrative, saturable, electrogenic and Na+-dependent D-mannose transport mechanism, which is different from SGLT1.Dirección General de Investigaciones Científicas y Técnicas PM99-012
D-mannose: a promising support for acute urinary tract infections in women. A pilot study
Urinary tract infections still represent a significant bother for women and result in high costs to the health system. D-mannose is a simple sugar; it seems able to hinder bacteria adhesion to the urothelium. The present study aimed to determine whether D-mannose alone is effective in treating acute urinary tract infections in women and its possible utility in the management of recurrences
Engineering of GlcNAc-1-phosphotransferase for production of highly phosphorylated lysosomal enzymes for enzyme replacement therapy
Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification
Cooperative Stimulation of Dendritic Cells by Cryptococcus neoformans Mannoproteins and CpG Oligodeoxynucleotides
While mannosylation targets antigens to mannose receptors on dendritic cells (DC), the resultant immune response is suboptimal. We hypothesized that the addition of toll-like receptor (TLR) ligands would enhance the DC response to mannosylated antigens. Cryptococcus neoformans mannoproteins (MP) synergized with CpG-containing oligodeoxynucleotides to stimulate enhanced production of proinflammatory cytokines and chemokines from murine conventional and plasmacytoid DC. Synergistic stimulation required the interaction of mannose residues on MP with the macrophage mannose receptor (MR), CD206. Moreover, synergy with MP was observed with other TLR ligands, including tripalmitoylated lipopeptide (Pam3CSK4), polyinosine-polycytidylic acid (pI:C), and imiquimod. Finally, CpG enhanced MP-specific MHC II-restricted CD4+ T-cell responses by a mechanism dependent upon DC expression of CD206 and TLR9. These data suggest a rationale for vaccination strategies that combine mannosylated antigens with TLR ligands and imply that immune responses to naturally mannosylated antigens on pathogens may be greatly augmented if TLR and MR are cooperatively stimulated.National Institutes of Health (RO1 AI25780, RO1 AI37532, K08 AI 53542
Phosphomannosyl receptors may participate in the adhesive interaction between lymphocytes and high endothelial venules.
Normal and malignant lymphocytes can migrate from the bloodstream into lymph nodes and Peyer's patches. This process helps distribute normal lymphocytes throughout the lymphoid system and may provide a portal of entry for circulating malignant cells. An adhesive interaction between lymphocytes and the endothelium of postcapillary venules is the first step in the migratory process. We have recently shown that the simple sugars L-fucose and D-mannose, and an L-fucose-rich polysaccharide (fucoidin), can inhibit this adhesive interaction in vitro. We now report that mannose-6-phosphate, the structurally related sugar fructose-1-phosphate, and a phosphomannan, core polysaccharide from the yeast Hansenula holstii (PPME) are also potent inhibitors. Inhibitory activity was assessed by incubating freshly prepared suspensions of lymphocytes, containing the various additives, over air-dried, frozen sections of syngeneic lymph nodes at 7-10 degrees C. Sections were then evaluated in the light microscope for the binding of lymphocytes to postcapillary venules. Mannose-6-phosphate and fructose-1-phosphate were potent inhibitors of lymphocyte attachment (one-half maximal inhibition at 2-3 mM). Mannose-1-phosphate and fructose-6-phosphate had slight inhibitory activity, while glucose-1-phosphate, glucose-6-phosphate, galactose-1-phosphate, and galactose-6-phosphate had no significant activity (at 10 mM). In addition, the phosphomannan core polysaccharide was a potent inhibitor (one-half maximal inhibition at 10-20 micrograms/ml); dephosphorylation with alkaline phosphatase resulted in loss of its inhibitory activity. Preincubation of the lymphocytes, but not the lymph node frozen sections, with PPME resulted in persistent inhibition of binding. Neither the monosaccharides nor the polysaccharide suppressed protein synthesis nor decreased the viability of the lymphocytes. Furthermore, inhibitory activity did not correlate with an increase in negative charge on the lymphocyte surface (as measured by cellular electrophoresis). These data suggest that a carbohydrate-binding molecule on the lymphocyte surface, with specificity for mannose-phosphates and structurally related carbohydrates, may be involved in the adhesive interaction mediating lymphocyte recirculation
Recommended from our members
Unveiling the metabolic fate of monosaccharides in cell membranes with glycomic and glycoproteomic analyses.
Cell membrane protein glycosylation is dependent on the metabolic state of the cell as well as exogenous nutrients available. Although the metabolism and interconversion of monosaccharides have been well-studied, their incorporation into cell surface glycans and their corresponding glycoproteins remains relatively unknown. In this study, we developed a method to investigate quantitatively the incorporation pathways of dietary saccharides into specific glycans and glycoproteins on the cell membrane by treating intestinal Caco-2 and hepatic KKU-M213 cells with 13C-labeled monosaccharides and characterizing the resulting cell surface glycans and glycopeptides by LC-MS/MS. Time-course studies using uniformly labeled glucose revealed that the rate of incorporation was both glycan-specific and protein-dependent. Comparative studies using different dietary saccharides and multiple cell lines revealed the variance of monosaccharide utilization and interconversion in different tissues and organisms. The robust isotope-labeling and glycan profiling methods can provide a useful tool for differentiating glycosylation pathways and enhance the understanding of how dietary sugar intake affects health
Crystal Structure of the Cysteine-Rich Domain of Mannose Receptor Complexed with a Sulfated Carbohydrate Ligand
The macrophage and epithelial cell mannose receptor (MR) binds carbohydrates on foreign and host molecules. Two portions of MR recognize carbohydrates: tandemly arranged C-type lectin domains facilitate carbohydrate-dependent macrophage uptake of infectious organisms, and the NH2-terminal cysteine-rich domain (Cys-MR) binds to sulfated glycoproteins including pituitary hormones. To elucidate the mechanism of sulfated carbohydrate recognition, we determined crystal structures of Cys-MR alone and complexed with 4-sulfated-N-acetylgalactosamine at 1.7 and 2.2 Å resolution, respectively. Cys-MR folds into an approximately three-fold symmetric β-trefoil shape resembling fibroblast growth factor. The sulfate portions of 4-sulfated-N-acetylgalactosamine and an unidentified ligand found in the native crystals bind in a neutral pocket in the third lobe. We use the structures to rationalize the carbohydrate binding specificities of Cys-MR and compare the recognition properties of Cys-MR with other β-trefoil proteins
- …
