2,454 research outputs found

    X THEN X: Manipulation of Same-System Runoff Elections

    Full text link
    Do runoff elections, using the same voting rule as the initial election but just on the winning candidates, increase or decrease the complexity of manipulation? Does allowing revoting in the runoff increase or decrease the complexity relative to just having a runoff without revoting? For both weighted and unweighted voting, we show that even for election systems with simple winner problems the complexity of manipulation, manipulation with runoffs, and manipulation with revoting runoffs are independent, in the abstract. On the other hand, for some important, well-known election systems we determine what holds for each of these cases. For no such systems do we find runoffs lowering complexity, and for some we find that runoffs raise complexity. Ours is the first paper to show that for natural, unweighted election systems, runoffs can increase the manipulation complexity

    Schulze and Ranked-Pairs Voting are Fixed-Parameter Tractable to Bribe, Manipulate, and Control

    Full text link
    Schulze and ranked-pairs elections have received much attention recently, and the former has quickly become a quite widely used election system. For many cases these systems have been proven resistant to bribery, control, or manipulation, with ranked pairs being particularly praised for being NP-hard for all three of those. Nonetheless, the present paper shows that with respect to the number of candidates, Schulze and ranked-pairs elections are fixed-parameter tractable to bribe, control, and manipulate: we obtain uniform, polynomial-time algorithms whose degree does not depend on the number of candidates. We also provide such algorithms for some weighted variants of these problems

    Manipulation and Control Complexity of Schulze Voting

    Full text link
    Schulze voting is a recently introduced voting system enjoying unusual popularity and a high degree of real-world use, with users including the Wikimedia foundation, several branches of the Pirate Party, and MTV. It is a Condorcet voting system that determines the winners of an election using information about paths in a graph representation of the election. We resolve the complexity of many electoral control cases for Schulze voting. We find that it falls short of the best known voting systems in terms of control resistance, demonstrating vulnerabilities of concern to some prospective users of the system

    Combining Voting Rules Together

    Full text link
    We propose a simple method for combining together voting rules that performs a run-off between the different winners of each voting rule. We prove that this combinator has several good properties. For instance, even if just one of the base voting rules has a desirable property like Condorcet consistency, the combination inherits this property. In addition, we prove that combining voting rules together in this way can make finding a manipulation more computationally difficult. Finally, we study the impact of this combinator on approximation methods that find close to optimal manipulations

    Normalized Range Voting Broadly Resists Control

    Full text link
    We study the behavior of Range Voting and Normalized Range Voting with respect to electoral control. Electoral control encompasses attempts from an election chair to alter the structure of an election in order to change the outcome. We show that a voting system resists a case of control by proving that performing that case of control is computationally infeasible. Range Voting is a natural extension of approval voting, and Normalized Range Voting is a simple variant which alters each vote to maximize the potential impact of each voter. We show that Normalized Range Voting has among the largest number of control resistances among natural voting systems

    A Smooth Transition from Powerlessness to Absolute Power

    Get PDF
    We study the phase transition of the coalitional manipulation problem for generalized scoring rules. Previously it has been shown that, under some conditions on the distribution of votes, if the number of manipulators is o(n)o(\sqrt{n}), where nn is the number of voters, then the probability that a random profile is manipulable by the coalition goes to zero as the number of voters goes to infinity, whereas if the number of manipulators is ω(n)\omega(\sqrt{n}), then the probability that a random profile is manipulable goes to one. Here we consider the critical window, where a coalition has size cnc\sqrt{n}, and we show that as cc goes from zero to infinity, the limiting probability that a random profile is manipulable goes from zero to one in a smooth fashion, i.e., there is a smooth phase transition between the two regimes. This result analytically validates recent empirical results, and suggests that deciding the coalitional manipulation problem may be of limited computational hardness in practice.Comment: 22 pages; v2 contains minor changes and corrections; v3 contains minor changes after comments of reviewer
    • …
    corecore