9,008 research outputs found

    Curvature-aware Manifold Learning

    Full text link
    Traditional manifold learning algorithms assumed that the embedded manifold is globally or locally isometric to Euclidean space. Under this assumption, they divided manifold into a set of overlapping local patches which are locally isometric to linear subsets of Euclidean space. By analyzing the global or local isometry assumptions it can be shown that the learnt manifold is a flat manifold with zero Riemannian curvature tensor. In general, manifolds may not satisfy these hypotheses. One major limitation of traditional manifold learning is that it does not consider the curvature information of manifold. In order to remove these limitations, we present our curvature-aware manifold learning algorithm called CAML. The purpose of our algorithm is to break the local isometry assumption and to reduce the dimension of the general manifold which is not isometric to Euclidean space. Thus, our method adds the curvature information to the process of manifold learning. The experiments have shown that our method CAML is more stable than other manifold learning algorithms by comparing the neighborhood preserving ratios.Comment: 24 pages, 4 figure

    An Explicit Nonlinear Mapping for Manifold Learning

    Full text link
    Manifold learning is a hot research topic in the field of computer science and has many applications in the real world. A main drawback of manifold learning methods is, however, that there is no explicit mappings from the input data manifold to the output embedding. This prohibits the application of manifold learning methods in many practical problems such as classification and target detection. Previously, in order to provide explicit mappings for manifold learning methods, many methods have been proposed to get an approximate explicit representation mapping with the assumption that there exists a linear projection between the high-dimensional data samples and their low-dimensional embedding. However, this linearity assumption may be too restrictive. In this paper, an explicit nonlinear mapping is proposed for manifold learning, based on the assumption that there exists a polynomial mapping between the high-dimensional data samples and their low-dimensional representations. As far as we know, this is the first time that an explicit nonlinear mapping for manifold learning is given. In particular, we apply this to the method of Locally Linear Embedding (LLE) and derive an explicit nonlinear manifold learning algorithm, named Neighborhood Preserving Polynomial Embedding (NPPE). Experimental results on both synthetic and real-world data show that the proposed mapping is much more effective in preserving the local neighborhood information and the nonlinear geometry of the high-dimensional data samples than previous work

    megaman: Manifold Learning with Millions of points

    Full text link
    Manifold Learning is a class of algorithms seeking a low-dimensional non-linear representation of high-dimensional data. Thus manifold learning algorithms are, at least in theory, most applicable to high-dimensional data and sample sizes to enable accurate estimation of the manifold. Despite this, most existing manifold learning implementations are not particularly scalable. Here we present a Python package that implements a variety of manifold learning algorithms in a modular and scalable fashion, using fast approximate neighbors searches and fast sparse eigendecompositions. The package incorporates theoretical advances in manifold learning, such as the unbiased Laplacian estimator and the estimation of the embedding distortion by the Riemannian metric method. In benchmarks, even on a single-core desktop computer, our code embeds millions of data points in minutes, and takes just 200 minutes to embed the main sample of galaxy spectra from the Sloan Digital Sky Survey --- consisting of 0.6 million samples in 3750-dimensions --- a task which has not previously been possible.Comment: 12 pages, 6 figure

    Shamap: Shape-based Manifold Learning

    Full text link
    For manifold learning, it is assumed that high-dimensional sample/data points are embedded on a low-dimensional manifold. Usually, distances among samples are computed to capture an underlying data structure. Here we propose a metric according to angular changes along a geodesic line, thereby reflecting the underlying shape-oriented information or a topological similarity between high- and low-dimensional representations of a data cloud. Our results demonstrate the feasibility and merits of the proposed dimensionality reduction scheme

    Web image annotation by diffusion maps manifold learning algorithm

    Full text link
    Automatic image annotation is one of the most challenging problems in machine vision areas. The goal of this task is to predict number of keywords automatically for images captured in real data. Many methods are based on visual features in order to calculate similarities between image samples. But the computation cost of these approaches is very high. These methods require many training samples to be stored in memory. To lessen this burden, a number of techniques have been developed to reduce the number of features in a dataset. Manifold learning is a popular approach to nonlinear dimensionality reduction. In this paper, we investigate Diffusion maps manifold learning method for web image auto-annotation task. Diffusion maps manifold learning method is used to reduce the dimension of some visual features. Extensive experiments and analysis on NUS-WIDE-LITE web image dataset with different visual features show how this manifold learning dimensionality reduction method can be applied effectively to image annotation.Comment: 11 pages, 8 figure

    Co-manifold learning with missing data

    Full text link
    Representation learning is typically applied to only one mode of a data matrix, either its rows or columns. Yet in many applications, there is an underlying geometry to both the rows and the columns. We propose utilizing this coupled structure to perform co-manifold learning: uncovering the underlying geometry of both the rows and the columns of a given matrix, where we focus on a missing data setting. Our unsupervised approach consists of three components. We first solve a family of optimization problems to estimate a complete matrix at multiple scales of smoothness. We then use this collection of smooth matrix estimates to compute pairwise distances on the rows and columns based on a new multi-scale metric that implicitly introduces a coupling between the rows and the columns. Finally, we construct row and column representations from these multi-scale metrics. We demonstrate that our approach outperforms competing methods in both data visualization and clustering.Comment: 16 pages, 9 figure

    Deep nets for local manifold learning

    Full text link
    The problem of extending a function ff defined on a training data C\mathcal{C} on an unknown manifold X\mathbb{X} to the entire manifold and a tubular neighborhood of this manifold is considered in this paper. For X\mathbb{X} embedded in a high dimensional ambient Euclidean space RD\mathbb{R}^D, a deep learning algorithm is developed for finding a local coordinate system for the manifold {\bf without eigen--decomposition}, which reduces the problem to the classical problem of function approximation on a low dimensional cube. Deep nets (or multilayered neural networks) are proposed to accomplish this approximation scheme by using the training data. Our methods do not involve such optimization techniques as back--propagation, while assuring optimal (a priori) error bounds on the output in terms of the number of derivatives of the target function. In addition, these methods are universal, in that they do not require a prior knowledge of the smoothness of the target function, but adjust the accuracy of approximation locally and automatically, depending only upon the local smoothness of the target function. Our ideas are easily extended to solve both the pre--image problem and the out--of--sample extension problem, with a priori bounds on the growth of the function thus extended.Comment: Submitted on Sept. 17, 201

    Manifold Learning: The Price of Normalization

    Full text link
    We analyze the performance of a class of manifold-learning algorithms that find their output by minimizing a quadratic form under some normalization constraints. This class consists of Locally Linear Embedding (LLE), Laplacian Eigenmap, Local Tangent Space Alignment (LTSA), Hessian Eigenmaps (HLLE), and Diffusion maps. We present and prove conditions on the manifold that are necessary for the success of the algorithms. Both the finite sample case and the limit case are analyzed. We show that there are simple manifolds in which the necessary conditions are violated, and hence the algorithms cannot recover the underlying manifolds. Finally, we present numerical results that demonstrate our claims.Comment: Submitted to JML

    Constrained Manifold Learning for Hyperspectral Imagery Visualization

    Full text link
    Displaying the large number of bands in a hyper- spectral image (HSI) on a trichromatic monitor is important for HSI processing and analysis system. The visualized image shall convey as much information as possible from the original HSI and meanwhile facilitate image interpretation. However, most existing methods display HSIs in false color, which contradicts with user experience and expectation. In this paper, we propose a visualization approach based on constrained manifold learning, whose goal is to learn a visualized image that not only preserves the manifold structure of the HSI but also has natural colors. Manifold learning preserves the image structure by forcing pixels with similar signatures to be displayed with similar colors. A composite kernel is applied in manifold learning to incorporate both the spatial and spectral information of HSI in the embedded space. The colors of the output image are constrained by a corresponding natural-looking RGB image, which can either be generated from the HSI itself (e.g., band selection from the visible wavelength) or be captured by a separate device. Our method can be done at instance-level and feature-level. Instance-level learning directly obtains the RGB coordinates for the pixels in the HSI while feature-level learning learns an explicit mapping function from the high dimensional spectral space to the RGB space. Experimental results demonstrate the advantage of the proposed method in information preservation and natural color visualization

    Implicit Manifold Learning on Generative Adversarial Networks

    Full text link
    This paper raises an implicit manifold learning perspective in Generative Adversarial Networks (GANs), by studying how the support of the learned distribution, modelled as a submanifold Mθ\mathcal{M}_{\theta}, perfectly match with Mr\mathcal{M}_{r}, the support of the real data distribution. We show that optimizing Jensen-Shannon divergence forces Mθ\mathcal{M}_{\theta} to perfectly match with Mr\mathcal{M}_{r}, while optimizing Wasserstein distance does not. On the other hand, by comparing the gradients of the Jensen-Shannon divergence and the Wasserstein distances (W1W_1 and W22W_2^2) in their primal forms, we conjecture that Wasserstein W22W_2^2 may enjoy desirable properties such as reduced mode collapse. It is therefore interesting to design new distances that inherit the best from both distances
    • …
    corecore