2 research outputs found

    Efficient Penetration Depth Computation between Rigid Models using Contact Space Propagation Sampling

    Full text link
    We present a novel method to compute the approximate global penetration depth (PD) between two non-convex geometric models. Our approach consists of two phases: offline precomputation and run-time queries. In the first phase, our formulation uses a novel sampling algorithm to precompute an approximation of the high-dimensional contact space between the pair of models. As compared with prior random sampling algorithms for contact space approximation, our propagation sampling considerably speeds up the precomputation and yields a high quality approximation. At run-time, we perform a nearest-neighbor query and local projection to efficiently compute the translational or generalized PD. We demonstrate the performance of our approach on complex 3D benchmarks with tens or hundreds of thousands of triangles, and we observe significant improvement over previous methods in terms of accuracy, with a modest improvement in the run-time performance.Comment: 10 pages. add the acknowledgemen

    Contact Inertial Odometry: Collisions are your Friends

    Full text link
    Autonomous exploration of unknown environments with aerial vehicles remains a challenge, especially in perceptually degraded conditions. Dust, fog, or a lack of visual or LiDAR-based features results in severe difficulties for state estimation algorithms, which failure can be catastrophic. In this work, we show that it is indeed possible to navigate in such conditions without any exteroceptive sensing by exploiting collisions instead of treating them as constraints. To this end, we present a novel contact-based inertial odometry (CIO) algorithm: it uses estimated external forces with the environment to detect collisions and generate pseudo-measurements of the robot velocity, enabling autonomous flight. To fully exploit this method, we first perform modeling of a hybrid ground and aerial vehicle which can withstand collisions at moderate speeds, for which we develop an external wrench estimation algorithm. Then, we present our CIO algorithm and develop a reactive planner and control law which encourage exploration by bouncing off obstacles. All components of this framework are validated in hardware experiments and we demonstrate that a quadrotor can traverse a cluttered environment using an IMU only. This work can be used on drones to recover from visual inertial odometry failure or on micro-drones that do not have the payload capacity to carry cameras, LiDARs or powerful computers.Comment: In International Symposium on Robotics Research (ISRR) 201
    corecore