4 research outputs found

    DACS: Domain Adaptation via Cross-domain Mixed Sampling

    Full text link
    Semantic segmentation models based on convolutional neural networks have recently displayed remarkable performance for a multitude of applications. However, these models typically do not generalize well when applied on new domains, especially when going from synthetic to real data. In this paper we address the problem of unsupervised domain adaptation (UDA), which attempts to train on labelled data from one domain (source domain), and simultaneously learn from unlabelled data in the domain of interest (target domain). Existing methods have seen success by training on pseudo-labels for these unlabelled images. Multiple techniques have been proposed to mitigate low-quality pseudo-labels arising from the domain shift, with varying degrees of success. We propose DACS: Domain Adaptation via Cross-domain mixed Sampling, which mixes images from the two domains along with the corresponding labels and pseudo-labels. These mixed samples are then trained on, in addition to the labelled data itself. We demonstrate the effectiveness of our solution by achieving state-of-the-art results for GTA5 to Cityscapes, a common synthetic-to-real semantic segmentation benchmark for UDA.Comment: This paper has been accepted to WACV202

    Deep Adversarial Transition Learning using Cross-Grafted Generative Stacks

    Full text link
    Current deep domain adaptation methods used in computer vision have mainly focused on learning discriminative and domain-invariant features across different domains. In this paper, we present a novel "deep adversarial transition learning" (DATL) framework that bridges the domain gap by projecting the source and target domains into intermediate, transitional spaces through the employment of adjustable, cross-grafted generative network stacks and effective adversarial learning between transitions. Specifically, we construct variational auto-encoders (VAE) for the two domains, and form bidirectional transitions by cross-grafting the VAEs' decoder stacks. Furthermore, generative adversarial networks (GAN) are employed for domain adaptation, mapping the target domain data to the known label space of the source domain. The overall adaptation process hence consists of three phases: feature representation learning by VAEs, transitions generation, and transitions alignment by GANs. Experimental results demonstrate that our method outperforms the state-of-the art on a number of unsupervised domain adaptation benchmarks.Comment: 12 pages, 8 figure
    corecore