7,416 research outputs found

    Enhancing Deep Neural Networks Testing by Traversing Data Manifold

    Full text link
    We develop DEEPTRAVERSAL, a feedback-driven framework to test DNNs. DEEPTRAVERSAL first launches an offline phase to map media data of various forms to manifolds. Then, in its online testing phase, DEEPTRAVERSAL traverses the prepared manifold space to maximize DNN coverage criteria and trigger prediction errors. In our evaluation, DNNs executing various tasks (e.g., classification, self-driving, machine translation) and media data of different types (image, audio, text) were used. DEEPTRAVERSAL exhibits better performance than prior methods with respect to popular DNN coverage criteria and it can discover a larger number and higher quality of error-triggering inputs. The tested DNN models, after being repaired with findings of DEEPTRAVERSAL, achieve better accurac

    Reconstructing continuous distributions of 3D protein structure from cryo-EM images

    Full text link
    Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structure of proteins and other macromolecular complexes at near-atomic resolution. In single particle cryo-EM, the central problem is to reconstruct the three-dimensional structure of a macromolecule from 104710^{4-7} noisy and randomly oriented two-dimensional projections. However, the imaged protein complexes may exhibit structural variability, which complicates reconstruction and is typically addressed using discrete clustering approaches that fail to capture the full range of protein dynamics. Here, we introduce a novel method for cryo-EM reconstruction that extends naturally to modeling continuous generative factors of structural heterogeneity. This method encodes structures in Fourier space using coordinate-based deep neural networks, and trains these networks from unlabeled 2D cryo-EM images by combining exact inference over image orientation with variational inference for structural heterogeneity. We demonstrate that the proposed method, termed cryoDRGN, can perform ab initio reconstruction of 3D protein complexes from simulated and real 2D cryo-EM image data. To our knowledge, cryoDRGN is the first neural network-based approach for cryo-EM reconstruction and the first end-to-end method for directly reconstructing continuous ensembles of protein structures from cryo-EM images

    Multiple source transfer learning for dynamic multiobjective optimization

    Get PDF
    Recently, dynamic multiobjective evolutionary algorithms (DMOEAs) with transfer learning have become popular for solving dynamic multiobjective optimization problems (DMOPs), as the used transfer learning methods in DMOEAs can effectively generate a good initial population for the new environment. However, most of them only transfer non-dominated solutions from the previous one or two environments, which cannot fully exploit all historical information and may easily induce negative transfer as only limited knowledge is available. To address this problem, this paper presents a multiple source transfer learning method for DMOEA, called MSTL-DMOEA, which runs two transfer learning procedures to fully exploit the historical information from all previous environments. First, to select some representative solutions for knowledge transfer, one clustering-based manifold transfer learning is run to cluster non-dominated solutions of the last environment to obtain their centroids, which are then fed into the manifold transfer learning model to predict the corresponding centroids for the new environment. After that, multiple source transfer learning is further run by using multisource TrAdaboost, which can fully exploit information from the above centroids in new environment and old centroids from all previous environments, aiming to construct a more accurate prediction model. This way, MSTL-DMOEA can predict an initial population with better quality for the new environment. The experimental results also validate the superiority of MSTL-DMOEA over several competitive state-of-the-art DMOEAs in solving various kinds of DMOPs

    Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval

    Full text link
    In this paper, we propose a novel deep generative approach to cross-modal retrieval to learn hash functions in the absence of paired training samples through the cycle consistency loss. Our proposed approach employs adversarial training scheme to lean a couple of hash functions enabling translation between modalities while assuming the underlying semantic relationship. To induce the hash codes with semantics to the input-output pair, cycle consistency loss is further proposed upon the adversarial training to strengthen the correlations between inputs and corresponding outputs. Our approach is generative to learn hash functions such that the learned hash codes can maximally correlate each input-output correspondence, meanwhile can also regenerate the inputs so as to minimize the information loss. The learning to hash embedding is thus performed to jointly optimize the parameters of the hash functions across modalities as well as the associated generative models. Extensive experiments on a variety of large-scale cross-modal data sets demonstrate that our proposed method achieves better retrieval results than the state-of-the-arts.Comment: To appeared on IEEE Trans. Image Processing. arXiv admin note: text overlap with arXiv:1703.10593 by other author

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table
    corecore