5 research outputs found

    A deep evaluator for image retargeting quality by geometrical and contextual interaction

    Get PDF
    An image is compressed or stretched during the multidevice displaying, which will have a very big impact on perception quality. In order to solve this problem, a variety of image retargeting methods have been proposed for the retargeting process. However, how to evaluate the results of different image retargeting is a very critical issue. In various application systems, the subjective evaluation method cannot be applied on a large scale. So we put this problem in the accurate objective-quality evaluation. Currently, most of the image retargeting quality assessment algorithms use simple regression methods as the last step to obtain the evaluation result, which are not corresponding with the perception simulation in the human vision system (HVS). In this paper, a deep quality evaluator for image retargeting based on the segmented stacked AutoEnCoder (SAE) is proposed. Through the help of regularization, the designed deep learning framework can solve the overfitting problem. The main contributions in this framework are to simulate the perception of retargeted images in HVS. Especially, it trains two separated SAE models based on geometrical shape and content matching. Then, the weighting schemes can be used to combine the obtained scores from two models. Experimental results in three well-known databases show that our method can achieve better performance than traditional methods in evaluating different image retargeting results

    Understanding perceived quality through visual representations

    Get PDF
    The formatting of images can be considered as an optimization problem, whose cost function is a quality assessment algorithm. There is a trade-off between bit budget per pixel and quality. To maximize the quality and minimize the bit budget, we need to measure the perceived quality. In this thesis, we focus on understanding perceived quality through visual representations that are based on visual system characteristics and color perception mechanisms. Specifically, we use the contrast sensitivity mechanisms in retinal ganglion cells and the suppression mechanisms in cortical neurons. We utilize color difference equations and color name distances to mimic pixel-wise color perception and a bio-inspired model to formulate center surround effects. Based on these formulations, we introduce two novel image quality estimators PerSIM and CSV, and a new image quality-assistance method BLeSS. We combine our findings from visual system and color perception with data-driven methods to generate visual representations and measure their quality. The majority of existing data-driven methods require subjective scores or degraded images. In contrast, we follow an unsupervised approach that only utilizes generic images. We introduce a novel unsupervised image quality estimator UNIQUE, and extend it with multiple models and layers to obtain MS-UNIQUE and DMS-UNIQUE. In addition to introducing quality estimators, we analyze the role of spatial pooling and boosting in image quality assessment.Ph.D
    corecore